Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress

Comparative proteomic analysis of grain development in two spring wheat varieties under drought... Two spring wheat varieties Ningchun 4 and Chinese Spring with good and poor resistance to abiotic stress, respectively, were used to investigate proteomic changes in the developing grains under drought stress by a comparative proteomics approach. A total of 152 protein spots showed at least twofold differences in abundance on two-dimensional electrophoresis (2-DE) maps, of which 28 and 68 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry, respectively. Of the 96 identified protein spots, six different expression patterns were found and they were involved in stress/defense/detoxification, carbohydrate metabolism, photosynthesis, nitrogen metabolism, storage proteins and some other important functions. Comparative proteomic analysis revealed that under the drought conditions the decreased degree of ascorbate peroxidases was more significant in Chinese Spring than in Ningchun 4 during grain development whereas translationally controlled tumor protein, which was significantly upregulated at 14 DAF, was present in Ningchun 4 and absent in Chinese Spring. The Rubisco large subunit displayed an upregulated expression pattern in Ningchun 4. In addition, two drought-tolerant proteins, triosephosphate isomerase and oxygen-evolving complex showed B and F type expression patterns in Chinese Spring, but D and B types in Ningchun 4, respectively. These differentially expressed proteins might be responsible for the stronger drought resistance of Ningchun 4 compared to Chinese Spring. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analytical and Bioanalytical Chemistry Springer Journals

Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress

Loading next page...
 
/lp/springer-journals/comparative-proteomic-analysis-of-grain-development-in-two-spring-jYx9xrqsAZ
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Chemistry; Food Science; Laboratory Medicine; Biochemistry, general; Characterization and Evaluation of Materials; Analytical Chemistry; Environmental Monitoring/Analysis
ISSN
1618-2642
eISSN
1618-2650
D.O.I.
10.1007/s00216-011-5532-z
Publisher site
See Article on Publisher Site

Abstract

Two spring wheat varieties Ningchun 4 and Chinese Spring with good and poor resistance to abiotic stress, respectively, were used to investigate proteomic changes in the developing grains under drought stress by a comparative proteomics approach. A total of 152 protein spots showed at least twofold differences in abundance on two-dimensional electrophoresis (2-DE) maps, of which 28 and 68 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry, respectively. Of the 96 identified protein spots, six different expression patterns were found and they were involved in stress/defense/detoxification, carbohydrate metabolism, photosynthesis, nitrogen metabolism, storage proteins and some other important functions. Comparative proteomic analysis revealed that under the drought conditions the decreased degree of ascorbate peroxidases was more significant in Chinese Spring than in Ningchun 4 during grain development whereas translationally controlled tumor protein, which was significantly upregulated at 14 DAF, was present in Ningchun 4 and absent in Chinese Spring. The Rubisco large subunit displayed an upregulated expression pattern in Ningchun 4. In addition, two drought-tolerant proteins, triosephosphate isomerase and oxygen-evolving complex showed B and F type expression patterns in Chinese Spring, but D and B types in Ningchun 4, respectively. These differentially expressed proteins might be responsible for the stronger drought resistance of Ningchun 4 compared to Chinese Spring.

Journal

Analytical and Bioanalytical ChemistrySpringer Journals

Published: Nov 13, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off