# Coins, Quantum Measurements, and Turing's Barrier

Coins, Quantum Measurements, and Turing's Barrier Is there any hope for quantum computing to challenge the Turing barrier, i.e., to solve an undecidable problem, to compute an uncomputable function? According to Feynman's '82 argument, the answer is negative. This paper re-opens the case: we will discuss solutions to a few simple problems which suggest that quantum computing is theoretically capable of computing uncomputable functions. Turing proved that there is no “halting (Turing) machine” capable of distinguishing between halting and non-halting programs (undecidability of the Halting Problem). Halting programs can be recognized by simply running them; the main difficulty is to detect non-halting programs. In this paper a mathematical quantum “device” (with sensitivity ε) is constructed to solve the Halting Problem. The “device” works on a randomly chosen test-vector for T units of time. If the “device” produces a click, then the program halts. If it does not produce a click, then either the program does not halt or the test-vector has been chosen from an undistinguishable set of vectors F ε, T. The last case is not dangerous as our main result proves: the Wiener measure of F ε, T constructively tends to zero when T tends to infinity. The “device”, working in time T, appropriately computed, will determine with a pre-established precision whether an arbitrary program halts or not. Building the “halting machine” is mathematically possible. To construct our “device” we use the quadratic form of an iterated map (encoding the whole data in an infinite superposition) acting on randomly chosen vectors viewed as special trajectories of two Markov processes working in two different scales of time. The evolution is described by an unbounded, exponentially growing semigroup; finally a single measurement produces the result. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

# Coins, Quantum Measurements, and Turing's Barrier

Quantum Information Processing, Volume 1 (2) – Oct 13, 2004
21 pages

/lp/springer-journals/coins-quantum-measurements-and-turing-s-barrier-KpsBJozYYn
Publisher
Springer Journals
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/A:1019623616675
Publisher site
See Article on Publisher Site

### Abstract

Is there any hope for quantum computing to challenge the Turing barrier, i.e., to solve an undecidable problem, to compute an uncomputable function? According to Feynman's '82 argument, the answer is negative. This paper re-opens the case: we will discuss solutions to a few simple problems which suggest that quantum computing is theoretically capable of computing uncomputable functions. Turing proved that there is no “halting (Turing) machine” capable of distinguishing between halting and non-halting programs (undecidability of the Halting Problem). Halting programs can be recognized by simply running them; the main difficulty is to detect non-halting programs. In this paper a mathematical quantum “device” (with sensitivity ε) is constructed to solve the Halting Problem. The “device” works on a randomly chosen test-vector for T units of time. If the “device” produces a click, then the program halts. If it does not produce a click, then either the program does not halt or the test-vector has been chosen from an undistinguishable set of vectors F ε, T. The last case is not dangerous as our main result proves: the Wiener measure of F ε, T constructively tends to zero when T tends to infinity. The “device”, working in time T, appropriately computed, will determine with a pre-established precision whether an arbitrary program halts or not. Building the “halting machine” is mathematically possible. To construct our “device” we use the quadratic form of an iterated map (encoding the whole data in an infinite superposition) acting on randomly chosen vectors viewed as special trajectories of two Markov processes working in two different scales of time. The evolution is described by an unbounded, exponentially growing semigroup; finally a single measurement produces the result.

### Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 13, 2004

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations

Abstract access only

18 million full-text articles

Print

20 pages / month

PDF Discount

20% off