Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase

Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent... l-asparaginases (EC 3.5.1.1) are hypothesized to play an important role in nitrogen supply to sink tissues, especially in legume-developing seeds. Two plant l-asparaginase subtypes were previously identified according to their K+-dependence for catalytic activity. An l-asparaginase homologous to Lupinus K+-independent enzymes with activity towards β-aspartyl dipeptides, At5g08100, has been previously characterized as a member of the N-terminal nucleophile amidohydrolase superfamily in Arabidopsis. In this study, a K+-dependent l-asparaginase from Arabidopsis, At3g16150, is characterized. The recombinants At3g16150 and At5g08100 share a similar subunit structure and conserved autoproteolytic pentapeptide cleavage site, commencing with the catalytic Thr nucleophile, as determined by ESI-MS. The catalytic activity of At3g16150 was enhanced approximately tenfold in the presence of K+. At3g16150 was strictly specific for l-Asn, and had no activity towards β-aspartyl dipeptides. At3g16150 also had an approximately 80-fold higher catalytic efficiency with l-Asn relative to At5g08100. Among the β-aspartyl dipeptides tested, At5g08100 had a preference for β-aspartyl-His, with catalytic efficiency comparable to that with l-Asn. The phylogenetic analysis revealed that At3g16150 and At5g08100 belong to two distinct subfamilies. The transcript levels of At3g16150 and At5g08100 were highest in sink tissues, especially in flowers and siliques, early in development, as determined by quantitative RT-PCR. The overlapping spatial patterns of expression argue for a partially redundant function of the enzymes. However, the high catalytic efficiency suggests that the K+-dependent enzyme may metabolize l-Asn more efficiently under conditions of high metabolic demand for N. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Planta Springer Journals

Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase

Planta, Volume 224 (3) – May 10, 2006

Loading next page...
 
/lp/springer-journals/co-occurrence-of-both-l-asparaginase-subtypes-in-arabidopsis-at3g16150-6T4wGbuNgT
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Life Sciences; Forestry; Ecology; Agriculture; Plant Sciences
ISSN
0032-0935
eISSN
1432-2048
DOI
10.1007/s00425-006-0245-9
Publisher site
See Article on Publisher Site

Abstract

l-asparaginases (EC 3.5.1.1) are hypothesized to play an important role in nitrogen supply to sink tissues, especially in legume-developing seeds. Two plant l-asparaginase subtypes were previously identified according to their K+-dependence for catalytic activity. An l-asparaginase homologous to Lupinus K+-independent enzymes with activity towards β-aspartyl dipeptides, At5g08100, has been previously characterized as a member of the N-terminal nucleophile amidohydrolase superfamily in Arabidopsis. In this study, a K+-dependent l-asparaginase from Arabidopsis, At3g16150, is characterized. The recombinants At3g16150 and At5g08100 share a similar subunit structure and conserved autoproteolytic pentapeptide cleavage site, commencing with the catalytic Thr nucleophile, as determined by ESI-MS. The catalytic activity of At3g16150 was enhanced approximately tenfold in the presence of K+. At3g16150 was strictly specific for l-Asn, and had no activity towards β-aspartyl dipeptides. At3g16150 also had an approximately 80-fold higher catalytic efficiency with l-Asn relative to At5g08100. Among the β-aspartyl dipeptides tested, At5g08100 had a preference for β-aspartyl-His, with catalytic efficiency comparable to that with l-Asn. The phylogenetic analysis revealed that At3g16150 and At5g08100 belong to two distinct subfamilies. The transcript levels of At3g16150 and At5g08100 were highest in sink tissues, especially in flowers and siliques, early in development, as determined by quantitative RT-PCR. The overlapping spatial patterns of expression argue for a partially redundant function of the enzymes. However, the high catalytic efficiency suggests that the K+-dependent enzyme may metabolize l-Asn more efficiently under conditions of high metabolic demand for N.

Journal

PlantaSpringer Journals

Published: May 10, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off