Clonal in vitro propagation of peat mosses (Sphagnum L.) as novel green resources for basic and applied research

Clonal in vitro propagation of peat mosses (Sphagnum L.) as novel green resources for basic and... As builders and major components of peatlands, Sphagnopsida (peat mosses) are very important organisms for ecosystems and world’s climate. Nowadays many Sphagnum species as well as their habitats are largely protected, while their scientific and economic relevance remains considerable. Advanced methods of in vitro cultivation provide the potential to work in a sustainable way with peat mosses and address aspects of basic research as well as biotechnological and economical topics like biomonitoring or the production of renewable substrates for horticulture (Sphagnum farming). Here, we describe the establishment of axenic in vitro cultures of the five peat moss species Sphagnum fimbriatum Wils. and Hook., Sphagnum magellanicum Brid., Sphagnum palustre L., Sphagnum rubellum Wils. and Sphagnum subnitens Russ. and Warnst. with specific focus on large-scale cultivation of S. palustre in bioreactors. Axenic, clonal cultures were established to produce high quantities of biomass under standardized laboratory conditions. For advanced production of S. palustre we tested different cultivation techniques, growth media and inocula, and analyzed the effects of tissue disruption. While cultivation on solid medium is suitable for long term storage, submerse cultivation in liquid medium yielded highest amounts of biomass. By addition of sucrose and ammonium nitrate we were able to increase the biomass by around 10- to 30-fold within 4 weeks. The morphology of in vitro-cultivated gametophores showed similar phenotypic characteristics compared to material from the field. Thus the tested culture techniques are suitable to produce S. palustre material for basic and applied research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell, Tissue and Organ Culture Springer Journals

Clonal in vitro propagation of peat mosses (Sphagnum L.) as novel green resources for basic and applied research

Loading next page...
 
/lp/springer-journals/clonal-in-vitro-propagation-of-peat-mosses-sphagnum-l-as-novel-green-Xhn0sJMW0V
Publisher
Springer Journals
Copyright
Copyright © 2014 by The Author(s)
Subject
Life Sciences; Plant Sciences; Plant Physiology; Plant Genetics & Genomics; Plant Pathology
ISSN
0167-6857
eISSN
1573-5044
D.O.I.
10.1007/s11240-014-0658-2
Publisher site
See Article on Publisher Site

Abstract

As builders and major components of peatlands, Sphagnopsida (peat mosses) are very important organisms for ecosystems and world’s climate. Nowadays many Sphagnum species as well as their habitats are largely protected, while their scientific and economic relevance remains considerable. Advanced methods of in vitro cultivation provide the potential to work in a sustainable way with peat mosses and address aspects of basic research as well as biotechnological and economical topics like biomonitoring or the production of renewable substrates for horticulture (Sphagnum farming). Here, we describe the establishment of axenic in vitro cultures of the five peat moss species Sphagnum fimbriatum Wils. and Hook., Sphagnum magellanicum Brid., Sphagnum palustre L., Sphagnum rubellum Wils. and Sphagnum subnitens Russ. and Warnst. with specific focus on large-scale cultivation of S. palustre in bioreactors. Axenic, clonal cultures were established to produce high quantities of biomass under standardized laboratory conditions. For advanced production of S. palustre we tested different cultivation techniques, growth media and inocula, and analyzed the effects of tissue disruption. While cultivation on solid medium is suitable for long term storage, submerse cultivation in liquid medium yielded highest amounts of biomass. By addition of sucrose and ammonium nitrate we were able to increase the biomass by around 10- to 30-fold within 4 weeks. The morphology of in vitro-cultivated gametophores showed similar phenotypic characteristics compared to material from the field. Thus the tested culture techniques are suitable to produce S. palustre material for basic and applied research.

Journal

Plant Cell, Tissue and Organ CultureSpringer Journals

Published: Nov 14, 2014

References

  • Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy)
    Adamo, P; Giordano, S; Vingiani, S; Castaldo Cobianchi, R; Violante, P
  • Study of the air quality in industrial areas of Santa Cruz de Tenerife (Spain) by active biomonitoring with Pseudoscleropodium purum
    Ares, A; Fernández, JÁ; Aboal, JR; Carballeira, A

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off