Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Classifying GRB 170817A/GW170817 in a Fermi duration–hardness plane

Classifying GRB 170817A/GW170817 in a Fermi duration–hardness plane GRB 170817A, associated with the LIGO-Virgo GW170817 neutron-star merger event, lacks the short duration and hard spectrum of a Short gamma-ray burst (GRB) expected from long-standing classification models. Correctly identifying the class to which this burst belongs requires comparison with other GRBs detected by the Fermi GBM. The aim of our analysis is to classify Fermi GRBs and to test whether or not GRB 170817A belongs—as suggested—to the Short GRB class. The Fermi GBM catalog provides a large database with many measured variables that can be used to explore gamma-ray burst classification. We use statistical techniques to look for clustering in a sample of 1298 gamma-ray bursts described by duration and spectral hardness. Classification of the detected bursts shows that GRB 170817A most likely belongs to the Intermediate, rather than the Short GRB class. We discuss this result in light of theoretical neutron-star merger models and existing GRB classification schemes. It appears that GRB classification schemes may not yet be linked to appropriate theoretical models, and that theoretical models may not yet adequately account for known GRB class properties. We conclude that GRB 170817A may not fit into a simple phenomenological classification scheme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Astrophysics and Space Science Springer Journals

Classifying GRB 170817A/GW170817 in a Fermi duration–hardness plane

Loading next page...
1
 
/lp/springer-journals/classifying-grb-170817a-gw170817-in-a-fermi-duration-hardness-plane-JcvxJcjtS1

References (4)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Physics; Astrophysics and Astroparticles; Astronomy, Observations and Techniques; Cosmology; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics) ; Astrobiology
ISSN
0004-640X
eISSN
1572-946X
DOI
10.1007/s10509-018-3274-5
Publisher site
See Article on Publisher Site

Abstract

GRB 170817A, associated with the LIGO-Virgo GW170817 neutron-star merger event, lacks the short duration and hard spectrum of a Short gamma-ray burst (GRB) expected from long-standing classification models. Correctly identifying the class to which this burst belongs requires comparison with other GRBs detected by the Fermi GBM. The aim of our analysis is to classify Fermi GRBs and to test whether or not GRB 170817A belongs—as suggested—to the Short GRB class. The Fermi GBM catalog provides a large database with many measured variables that can be used to explore gamma-ray burst classification. We use statistical techniques to look for clustering in a sample of 1298 gamma-ray bursts described by duration and spectral hardness. Classification of the detected bursts shows that GRB 170817A most likely belongs to the Intermediate, rather than the Short GRB class. We discuss this result in light of theoretical neutron-star merger models and existing GRB classification schemes. It appears that GRB classification schemes may not yet be linked to appropriate theoretical models, and that theoretical models may not yet adequately account for known GRB class properties. We conclude that GRB 170817A may not fit into a simple phenomenological classification scheme.

Journal

Astrophysics and Space ScienceSpringer Journals

Published: Feb 21, 2018

There are no references for this article.