Changes in composition of digestive gland and mantle muscle of the cuttlefish Sepia officinalis during starvation

Changes in composition of digestive gland and mantle muscle of the cuttlefish Sepia officinalis... 227 114 114 1 1 B. G. Castro J. L. Garrido C. G. Sotelo Instituto de Investigaciones Marinas de Vigo (CSIC) C/Eduardo Cabello 6 E-36208 Vigo (Pontevedra) Spain Marine Biomedical Institute University of Texas Medical Branch at Galveston 77550-2772 Galveston Texas USA Abstract Changes in the biochemical composition of the digestive gland and in the proteins of the mantle muscle of Sepia officinalis L, collected in September 1989 from the Ria de Vigo (northwest Spain), were measured during periods of 2, 4, 10 and >53 d starvation. The digestive gland lost weight faster than the rest of the body throughout the whole period of starvation. In the digestive gland, carbohydrate and protein contents did not change during starvation; however, lipid levels decreased significantly after 53 d. Phospholipid content increased during longterm starvation. The content of free fatty acids rose after 16 d. Sterols, diacylglycerylethers, triacylglycerols and carotenoids contents did not change significantly. Of the total fatty acids, 18:0, 20:2n6, 20:4n6 and the monounsaturated moieties were preferentially consumed; others, such as 22:5n3, 22:6n3 and 16:4n1, were selectively retained. In the mantle muscle, water content increased and total protein content decreased. The myofibrillar proteins decreased after 53 d starvation, whereas the sarcoplasmic fraction did not change and the stromatic proteins increased. No changes were observed in the electrophoretic patterns of sarcoplasmic and myofibrillar proteins. The digestive gland of S. officinalis does not seem to be an important reserve organ during long-term starvation, but does seem to be important during shortterm starvation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Biology Springer Journals

Changes in composition of digestive gland and mantle muscle of the cuttlefish Sepia officinalis during starvation

Marine Biology, Volume 114 (1) – Sep 1, 1992

Loading next page...
 
/lp/springer-journals/changes-in-composition-of-digestive-gland-and-mantle-muscle-of-the-7UjqPp2jKm
Publisher
Springer Journals
Copyright
Copyright © 1992 by Springer-Verlag
Subject
Life Sciences; Biomedicine general; Oceanography; Ecology; Microbiology; Zoology
ISSN
0025-3162
eISSN
1432-1793
D.O.I.
10.1007/BF00350851
Publisher site
See Article on Publisher Site

Abstract

227 114 114 1 1 B. G. Castro J. L. Garrido C. G. Sotelo Instituto de Investigaciones Marinas de Vigo (CSIC) C/Eduardo Cabello 6 E-36208 Vigo (Pontevedra) Spain Marine Biomedical Institute University of Texas Medical Branch at Galveston 77550-2772 Galveston Texas USA Abstract Changes in the biochemical composition of the digestive gland and in the proteins of the mantle muscle of Sepia officinalis L, collected in September 1989 from the Ria de Vigo (northwest Spain), were measured during periods of 2, 4, 10 and >53 d starvation. The digestive gland lost weight faster than the rest of the body throughout the whole period of starvation. In the digestive gland, carbohydrate and protein contents did not change during starvation; however, lipid levels decreased significantly after 53 d. Phospholipid content increased during longterm starvation. The content of free fatty acids rose after 16 d. Sterols, diacylglycerylethers, triacylglycerols and carotenoids contents did not change significantly. Of the total fatty acids, 18:0, 20:2n6, 20:4n6 and the monounsaturated moieties were preferentially consumed; others, such as 22:5n3, 22:6n3 and 16:4n1, were selectively retained. In the mantle muscle, water content increased and total protein content decreased. The myofibrillar proteins decreased after 53 d starvation, whereas the sarcoplasmic fraction did not change and the stromatic proteins increased. No changes were observed in the electrophoretic patterns of sarcoplasmic and myofibrillar proteins. The digestive gland of S. officinalis does not seem to be an important reserve organ during long-term starvation, but does seem to be important during shortterm starvation.

Journal

Marine BiologySpringer Journals

Published: Sep 1, 1992

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off