Access the full text.
Sign up today, get DeepDyve free for 14 days.
Joseph Samaniuk, C. Scott, T. Root, D. Klingenberg (2011)
The effect of high intensity mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions.Bioresource technology, 102 6
K. Clarke, Xinping Li, Kecheng Li (2011)
The mechanism of fiber cutting during enzymatic hydrolysis of wood biomassBiomass & Bioenergy, 35
O. Astley, A. Donald (2001)
A small-angle X-ray scattering study of the effect of hydration on the microstructure of flax fibers.Biomacromolecules, 2 3
Wilfrid. Robinson
The Microscopical Features of Mechanical Strains in Timber and the Bearing of these on the Structure of the Cell-Wall in PlantsPhilosophical Transactions of the Royal Society B, 210
M. Aslan, G. Chinga-Carrasco, B. Sørensen, B. Madsen (2011)
Strength variability of single flax fibresJournal of Materials Science, 46
L. Hildén, Priit Väljamäe, G. Johansson (2005)
Surface character of pulp fibres studied using endoglucanases.Journal of biotechnology, 118 4
(2009)
Effects of commercial cellobiohy
S. Mansfield, C. Mooney, J. Saddler (1999)
Substrate and Enzyme Characteristics that Limit Cellulose HydrolysisBiotechnology Progress, 15
M. Eder, I. Burgert (2010)
Natural fibres - function in nature
J. Andersons, E. Poriķe, E. Spārniņš (2011)
Modeling strength scatter of elementary flax fibers: The effect of mechanical damage and geometrical characteristicsComposites Part A-applied Science and Manufacturing, 42
Y. Nishiyama, U. Kim, Dae-Young Kim, K. Katsumata, R. May, P. Langan (2003)
Periodic disorder along ramie cellulose microfibrils.Biomacromolecules, 4 4
N. Gurnagul, D. Page, M. Paice (1992)
The effect of cellulose degradation on the strength of wood pulp fibresNordic Pulp & Paper Research Journal, 7
N. Moigne, Monica Spinu, T. Heinze, P. Navard (2010)
Restricted dissolution and derivatization capacities of cellulose fibres under uniaxial elongational stressPolymer, 51
Takeshi Kawakubo, S. Karita, Yuko Araki, Shota Watanabe, Masafumi Oyadomari, Rie Takada, F. Tanaka, K. Abe, Takahito Watanabe, Yoichiro Honda, Takashi Watanabe (2010)
Analysis of exposed cellulose surfaces in pretreated wood biomass using carbohydrate‐binding module (CBM)–cyan fluorescent protein (CFP)Biotechnology and Bioengineering, 105
(2008)
Holzforschung 63:731–736 Suurnäkki A (1996) Hemicelulases in the bleaching
L. Thygesen, J. Bilde-Sørensen, P. Hoffmeyer (2006)
Visualisation of dislocations in hemp fibres: A comparison between scanning electron microscopy (SEM) and polarized light microscopy (PLM)Industrial Crops and Products, 24
Jeff Wallace (2006)
An Enzymatic Fiber Modification Method for Enhancing Tissue Properties
E. Fernandez, R. Young (1996)
Properties of cellulose pulps from acidic and basic processesCellulose, 3
G. Buschle-Diller, S. Zeronian, N. Pan, M. Yoon (1994)
Enzymatic Hydrolysis of Cotton, Linen, Ramie, and Viscose Rayon FabricsTextile Research Journal, 64
M. Peura, M. Sarén, J. Laukkanen, K. Nyg̊ard, S. Andersson, P. Saranpää, T. Paakkari, K. Hämäläinen, R. Serimaa (2008)
The elemental composition, the microfibril angle distribution and the shape of the cell cross-section in Norway spruce xylemTrees, 22
G. Allaire, R. Brizzi, J. Dufrêche, A. Mikelić, Andrey Piatnitski (2013)
Ion transport in porous media: derivation of the macroscopic equations using upscaling and properties of the effective coefficientsComputational Geosciences, 17
C. Laine, Xinshu Wang, M. Tenkanen, A. Varhimo (2004)
Changes in the fiber wall during refining of bleached pine kraft pulp, 58
L. Filonova, L. Gunnarsson, G. Daniel, M. Ohlin (2007)
Synthetic xylan-binding modules for mapping of pulp fibres and wood sectionsBMC Plant Biology, 7
J. Lehtiö, J. Sugiyama, Malin Gustavsson, Linda Fransson, M. Linder, T. Teeri (2003)
The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modulesProceedings of the National Academy of Sciences of the United States of America, 100
P. Hermans, A. Weidinger (1949)
X‐ray studies on the crystallinity of celluloseJournal of Polymer Science, 4
Sunkyu Park, J. Baker, M. Himmel, P. Parilla, David Johnson (2010)
Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performanceBiotechnology for Biofuels, 3
N. Terziev, G. Daniel, A. Marklund (2005)
Dislocations in Norway spruce fibres and their effect on properties of pulp and paper, 59
H. Lenting, M. Warmoeskerken (2001)
Mechanism of interaction between cellulase action and applied shear force, an hypothesis.Journal of biotechnology, 89 2-3
(1990)
Failure of wood as influenced by moisture and duration of load. PhD thesis, The State University of New York, College of Environmental Science and Forestry
G. Koch, J. Bauch, O. Dünisch, G. Seehann, U. Schmitt (1996)
Sekundäre Veränderungen im Holz akut belasteter Fichten (Picea abies [L.] Karst.) in Hochlagen des OsterzgebirgesHolz als Roh- und Werkstoff, 54
Sun Lee, Ik‐Hwan Kim, D. Ryu, H. Taguchi (1983)
Structural properties of cellulose and cellulase reaction mechanismBiotechnology and Bioengineering, 25
Josephine Lai-Kee-Him, H. Chanzy, Martin Müller, J. Putaux, T. Imai, V. Bulone (2002)
In Vitro Versus in VivoCellulose Microfibrils from Plant Primary Wall Synthases: Structural Differences*The Journal of Biological Chemistry, 277
P. Ander (2002)
Dislocations and balloon swelling in spruce kraft pulp fibres – Effect of cellulases, xylanase and laccase/HBTProgress in Biotechnology, 21
L. Thygesen, B. Hidayat, K. Johansen, C. Felby (2011)
Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell wallsJournal of Industrial Microbiology & Biotechnology, 38
A. Cochaux, A. D'aveni (1996)
Fundamental differences between beating and cellulasic actions on softwood kraft fibres, 50
E. Reese, L. Segal', V. Tripp (1957)
The Effect of Cellulase on the Degree of Polymerization of Cellulose and HydrocelluloseTextile Research Journal, 27
L. Thygesen, M. Asgharipour (2008)
The effects of growth and storage conditions on dislocations in hemp fibresJournal of Materials Science, 43
G. Buschle-Diller, C. Fanter, F. Loth (1999)
Structural Changes in Hemp Fibers as a Result of Enzymatic Hydrolysis with Mixed Enzyme SystemsTextile Research Journal, 69
L. Filonova, Å. Kallas, Lionel Greffe, G. Johansson, T. Teeri, G. Daniel (2007)
Analysis of the surfaces of wood tissues and pulp fibers using carbohydrate-binding modules specific for crystalline cellulose and mannan.Biomacromolecules, 8 1
Luis Rio, R. Chandra, J. Saddler (2012)
Fibre size does not appear to influence the ease of enzymatic hydrolysis of organosolv-pretreated softwoods.Bioresource technology, 107
Susanna Fält, L. Wågberg (2003)
Influence of electrolytes on the swelling and strength of kraft-liner pulpsNordic Pulp & Paper Research Journal, 18
(2006)
The effects of growth and storage conditions on dislocations in hemp fibers
(1999)
The use of fiber cut probabilities to study fiber weak points
(1990)
Fractures and dislocations in the walls of kraft and bisulphite pulp fibers
A. O'sullivan (1997)
Cellulose: the structure slowly unravelsCellulose, 4
S. Anagnost, R. Mark, R. Hanna (2007)
VARIATION OF MICROFIBRIL ANGLE WITHIN INDIVIDUAL TRACHEIDSWood and Fiber Science, 34
A. Frey-Wyssling (1953)
Über den Feinbau der Stauchlinien in überbeanspruchtem holzHolz als Roh- und Werkstoff, 11
E. Mounir, El Ismaïl (2004)
Characterization of Two Non Constitutive Hydroxycinnamic Acid Derivatives in Date Palm (Phoenix dactylifera L.) Callus in Relation with Tissue BrowningBiotechnology(faisalabad), 3
J. Henshaw, D. Bolam, V. Pires, M. Czjzek, B. Henrissat, L. Ferreira, C. Fontes, H. Gilbert (2004)
The Family 6 Carbohydrate Binding Module CmCBM6-2 Contains Two Ligand-binding Sites with Distinct Specificities*[boxs]Journal of Biological Chemistry, 279
K. Selby (1961)
The degradation of cotton cellulose by the extracellular cellulase of Myrothecium verrucariaBiochemical Journal, 79
A. Cavaco-Paulo, L. Almeida, D. Bishop (1996)
Effects of Agitation and Endoglucanase Pretreatment on the Hydrolysis of Cotton Fabrics by a Total CellulaseTextile Research Journal, 66
(1995)
Anomalies of structure along cellulosic fibers : characterization and consequences
K. Selby, C. Maitland (1967)
Components of Trichoderma viride cellulaseArchives of Biochemistry and Biophysics, 118
Géraldine Carrard, A. Koivula, H. Söderlund, P. Béguin (2000)
Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose.Proceedings of the National Academy of Sciences of the United States of America, 97 19
(1985)
Relationship between the fine
C. Baley (2004)
Influence of kink bands on the tensile strength of flax fibersJournal of Materials Science, 39
P. Weimer, W. Weston (1985)
Relationship between the fine structure of native cellulose and cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellumBiotechnology and Bioengineering, 27
(1995)
d’Aveni A (1995) Anomalies of structure along cellulosic fibers: characterization and consequences
J. Keckes, I. Burgert, K. Frühmann, Martin Müller, Klaas Kölln, M. Hamilton, M. Burghammer, S. Roth, S. Stanzl-Tschegg, P. Fratzl (2003)
Cell-wall recovery after irreversible deformation of woodNature Materials, 2
F. Gama, J. Teixeira, M. Mota (1994)
Cellulose morphology and enzymatic reactivity: A modified solute exclusion techniqueBiotechnology and Bioengineering, 43
C. Laine, T. Tamminen, B. Hortling (2004)
Carbohydrate structures in residual lignin-carbohydrate complexes of spruce and pine pulp, 58
A. Klyosov (1990)
Trends in biochemistry and enzymology of cellulose degradation.Biochemistry, 29 47
Alan White, R. Brown (1981)
Enzymatic hydrolysis of cellulose: Visual characterization of the process.Proceedings of the National Academy of Sciences of the United States of America, 78 2
P. Ander, G. Daniel, Cheryleen Lindgren, A. Marklund (2005)
Characterization of industrial and laboratory pulp fibres using HCl, Cellulase and FiberMaster analysisNordic Pulp & Paper Research Journal, 20
N. Hartler, S.M.B. Lemon, J. Nyrén, Ulf Frolander (1969)
MISALIGNED ZONES IN CELLULOSIC FIBRES. PART I. SURVEY, PART II. THEIR FORMATION DURING COMPRESSION OF THE WOOD, PART III. THEIR INFLUENCE ON THE FIBRE STIFFNESS, PART IV. THEIR INFLUENCE ON THE RATE OF ACID HYDROLYSIS,
Lavinia Gunnarsson, C. Montanier, R. Tunnicliffe, M. Williamson, H. Gilbert, E. Karlsson, M. Ohlin (2007)
Novel xylan-binding properties of an engineered family 4 carbohydrate-binding module.The Biochemical journal, 406 2
A. Dunker, Ariel Fernández (2007)
Engineering productive enzyme confinement.Trends in biotechnology, 25 5
R. Atalla, J. Brady, J. Matthews, S. Ding, M. Himmel (2009)
Structures of Plant Cell Wall Celluloses
J. Rouvinen, T. Bergfors, T. Teeri, J. Knowles, T. Jones (1990)
Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei.Science, 249 4967
K. Nyholm, P. Ander, S. Bardage, D. Geoffrey (2001)
Dislocations in pulp fibres – their origin, characteristics and importance – a reviewNordic Pulp & Paper Research Journal, 16
(1961)
Structural weakness in softwood pulp tracheids
H. Grethlein (1985)
The Effect of Pore Size Distribution on the Rate of Enzymatic Hydrolysis of Cellulosic SubstratesBio/Technology, 3
D. Akin, D. Slomczynski, L. Rigsby, K. Eriksson (2002)
Retting Flax with Endopolygalacturonase from Rhizopus oryzaeTextile Research Journal, 72
L. Hildén, G. Daniel, G. Johansson (2003)
Use of a fluorescence labelled, carbohydrate-binding module from Phanerochaete chrysosporium Cel7D for studying wood cell wall ultrastructureBiotechnology Letters, 25
Swati Rao (2009)
Enzymatic hydrolysis of cellulosic fiber
S. Khalili, D. Akin, B. Pettersson, G. Henriksson (2002)
Fibernodes in flax and other bast fibersJournal of applied botany, 76
D. Dai, M. Fan (2011)
Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopyVibrational Spectroscopy, 55
M. Suchy, T. Hakala, H. Kangas, E. Kontturi, T. Tammelin, Tiina Pursula, T. Vuorinen (2009)
Effects of commercial cellobiohydrolase treatment on fiber strength and morphology of bleached hardwood pulp 10th EWLP, Stockholm, Sweden, August 25–28, 2008, 63
A. Boraston, D. Bolam, H. Gilbert, G. Davies (2004)
Carbohydrate-binding modules: fine-tuning polysaccharide recognition.The Biochemical journal, 382 Pt 3
H. Bos, A. Donald (1999)
In situ ESEM study of the deformation of elementary flax fibresJournal of Materials Science, 34
H. Bos, M. Oever, O. Peters (2002)
Tensile and compressive properties of flax fibres for natural fibre reinforced compositesJournal of Materials Science, 37
H. Chanzy, B. Henrissat (1985)
Undirectional degradation of valonia cellulose microcrystals subjected to cellulase actionFEBS Letters, 184
L. Donaldson (1988)
Ultrastructure of wood cellulose substrates during enzymatic hydrolysisWood Science and Technology, 22
M. Eder, N. Terziev, G. Daniel, I. Burgert (2007)
The effect of (induced) dislocations on the tensile properties of individual Norway spruce fibres, 62
M Eder, I Burgert (2010)
Industrial applications of natural fibers: structure, properties and technical applications
(1969)
Misaligned zones in cellulosic fibers. Part 4. Their influence on the rate of acid hydrolysis
N. Hartler (1995)
Aspects on curled and microcompressed fibersNordic Pulp & Paper Research Journal, 10
A. Quirk, J. Lipkowski, C. Vandenende, D. Cockburn, A. Clarke, J. Dutcher, S. Roscoe (2010)
Direct visualization of the enzymatic digestion of a single fiber of native cellulose in an aqueous environment by atomic force microscopy.Langmuir : the ACS journal of surfaces and colloids, 26 7
L. Thygesen (2008)
Quantification of dislocations in hemp fibers using acid hydrolysis and fiber segment length distributionsJournal of Materials Science, 43
P. Ander, L. Hildén, G. Daniel (2008)
Cleavage of softwood kraft pulp fibers by HCl and cellulasesBioResources
J. Buchert, T. Tamminen, L. Viikari (1997)
Impact of the Donnan effect on the action of xylanases on fibre substratesJournal of Biotechnology, 57
Sunkyu Park, R. Venditti, D. Abrecht, H. Jameel, J. Pawlak, Jung Lee (2007)
Surface and pore structure modification of cellulose fibers through cellulase treatmentJournal of Applied Polymer Science, 103
E. Roberts, J. Bose, S. Rowland (1972)
Evidence for Two Types of Accessible Surfaces in Fibrous CottonTextile Research Journal, 42
J. Grignon, A. Scallan (1980)
Effect of pH and neutral salts upon the swelling of cellulose gelsJournal of Applied Polymer Science, 25
(2007)
ized light microscopy (PLM)
G. Davies, D. Bruce (1998)
Effect of Environmental Relative Humidity and Damage on the Tensile Properties of Flax and Nettle FibersTextile Research Journal, 68
U. Vainio, S. Andersson, R. Serimaa, T. Paakkari, P. Saranpää, M. Treacy, J. Evertsen (2002)
Variation of Microfibril Angle Between Four Provenances of Sitka Spruce (Picea sitchensis [Bong.] Carr.)Plant Biology, 4
A. Boraston, E. Kwan, P. Chiu, R. Warren, D. Kilburn (2003)
Recognition and Hydrolysis of Noncrystalline Cellulose*The Journal of Biological Chemistry, 278
S. Ding, Qi Xu, Mursheda Ali, J. Baker, E. Bayer, Yoav Barak, R. Lamed, J. Sugiyama, G. Rumbles, M. Himmel (2006)
Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution.BioTechniques, 41 4
K. Selby, C. Maitland (1967)
The cellulase of Trichoderma viride. Separation of the components involved in the solubilization of cotton.The Biochemical journal, 104 3
A. Wardrop, S. Jutte (1968)
The enzymatic degradation of cellulose from Valonia ventricosaWood Science and Technology, 2
M. Himmel (2009)
Biomass recalcitrance: deconstructing the plant cell wall for bioenergy.
L. Thygesen, M. Eder, I. Burgert (2007)
Dislocations in single hemp fibres—investigations into the relationship of structural distortions and tensile properties at the cell wall levelJournal of Materials Science, 42
Most secondary plant cell walls contain irregular regions known as dislocations or slip planes. Under industrial biorefining conditions dislocations have recently been shown to play a key role during the initial phase of the enzymatic hydrolysis of cellulose in plant cell walls. In this review we chart previous publications that have discussed the structure of dislocations and their susceptibility to hydrolysis. The supramolecular structure of cellulose in dislocations is still unknown. However, it has been shown that cellulose microfibrils continue through dislocations, i.e. dislocations are not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid or enzymatic hydrolysis of plant cell walls is carried out simultaneously with the application of shear stress, plant cells such as fibers or tracheids break at their dislocations. At present it is not known whether specific carbohydrate binding modules (CBMs) and/or cellulases preferentially access cellulose at dislocations. From the few studies published so far it seems that no special type of CBM is involved. In one case an endoglucanase was found to preferably bind to dislocations.
Cellulose – Springer Journals
Published: Aug 4, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.