“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Cavity/Inclusion Detection in Plane Linear Elastic Bodies Using Linear Sampling Method



In this paper, solution of inverse problems in elastostatic fields is investigated. For this purpose, we propose a qualitative inverse approach based on linear sampling method (LSM) for cavity/inclusion detection in a two-dimensional (2D) isotropic linear elastic body using measurement of data on the boundary. The LSM is an effective approach to image the geometrical features of unknown targets. Although the LSM has been used in the context of inverse scattering problems such as acoustics, and electromagnetism, there is no specific attempt to apply this method for identification of cavities/inclusions in inverse elastostatic problems. This study emphasizes the implementation of the LSM coupled with the finite element method (FEM). A set of numerical simulations on 2D elastostatic problems is presented to highlight many effective features of the proposed LSM fast qualitative identification method.



Journal of Nondestructive EvaluationSpringer Journals

Published: Mar 1, 2014

DOI: 10.1007/s10921-013-0206-8

Free Preview of First Page

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.