Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion

Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion  Over the past century, overgrazing and drought in New Mexico’s Jornada Basin has promoted the replacement of native black grama (Bouteloua eriopoda Torr.) grass communities by shrubs, primarily mesquite (Prosopis glandulosa Torr.). We investigated the effects of shrub expansion on the distribution, origin, turnover, and quality of light (LFC) and heavy (HFC) soil organic matter (SOM) fractions using δ13C natural abundance to partition SOM into C4 (grass) and C3 (shrub) sources. Soil organic matter beneath grasses and mesquite was isotopically distinct from associated plant litter, providing evidence of both recent shrub expansion and Holocene plant community changes. Our δ13C analyses indicated that SOM derived from mesquite was greatest beneath shrub canopies, but extended at least 3 m beyond canopy margins, similar to the distribution of fine roots. Specific 14C activities of LFC indicated that root litter is an important source of SOM at depth. Comparison of turnover rates for surface LFC pools in grass (7 or 40 years) and mesquite (11 or 28 years) soils and for HFC pools by soil depth (∼150–280 years), suggest that mesquite may enhance soil C storage relative to grasses. We conclude that the replacement of semiarid grasslands by woody shrubs will effect changes in root biomass, litter production, and SOM cycling that influence nutrient availability and long-term soil C sequestration at the ecosystem level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oecologia Springer Journals

Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion

Oecologia, Volume 110 (3) – Apr 18, 1997

Loading next page...
 
/lp/springer-journals/carbon-isotopes-reveal-soil-organic-matter-dynamics-following-arid-Ni9Rfb4hXK
Publisher
Springer Journals
Copyright
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Ecology; Plant Sciences; Hydrology/Water Resources
ISSN
0029-8549
eISSN
1432-1939
D.O.I.
10.1007/s004420050172
Publisher site
See Article on Publisher Site

Abstract

 Over the past century, overgrazing and drought in New Mexico’s Jornada Basin has promoted the replacement of native black grama (Bouteloua eriopoda Torr.) grass communities by shrubs, primarily mesquite (Prosopis glandulosa Torr.). We investigated the effects of shrub expansion on the distribution, origin, turnover, and quality of light (LFC) and heavy (HFC) soil organic matter (SOM) fractions using δ13C natural abundance to partition SOM into C4 (grass) and C3 (shrub) sources. Soil organic matter beneath grasses and mesquite was isotopically distinct from associated plant litter, providing evidence of both recent shrub expansion and Holocene plant community changes. Our δ13C analyses indicated that SOM derived from mesquite was greatest beneath shrub canopies, but extended at least 3 m beyond canopy margins, similar to the distribution of fine roots. Specific 14C activities of LFC indicated that root litter is an important source of SOM at depth. Comparison of turnover rates for surface LFC pools in grass (7 or 40 years) and mesquite (11 or 28 years) soils and for HFC pools by soil depth (∼150–280 years), suggest that mesquite may enhance soil C storage relative to grasses. We conclude that the replacement of semiarid grasslands by woody shrubs will effect changes in root biomass, litter production, and SOM cycling that influence nutrient availability and long-term soil C sequestration at the ecosystem level.

Journal

OecologiaSpringer Journals

Published: Apr 18, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off