Calcium-binding proteins in the retina of a calbindin-null mutant mouse

Calcium-binding proteins in the retina of a calbindin-null mutant mouse Calcium-binding proteins are abundantly expressed in many neurons of mammalian retinae. Their physiological roles are, however, largely unknown. This is particularly true for calcium-modulating proteins (“calcium buffers”) such as calbindin D28k. Here, we have studied retinae of wildtype (+/+) and calbindin-null mutant (–/–) mice by using immunocytochemical methods. Although calbindin immunoreactivity was completely absent in the calbindin (–/–) retinae, those cells that express the protein in wildtype retinae, such as horizontal cells, were still present and appeared normal. This was verified by immunostaining horizontal cells for various neurofilament proteins. In order to assess whether other calcium-binding proteins are upregulated in the mutant mouse and may thus compensate for the loss of calbindin, mouse retinae were also immunolabeled for parvalbumin, calretinin, and a calmodulin-like protein (CALP). In no instance could a change in the expression pattern of these proteins be detected by immunocytochemical methods. Thus, our results show that calbindin is not required for the maintenance of the light-microscopic structure of the differentiated retina and suggest roles for this protein in retinal function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cell and Tissue Research Springer Journals

Calcium-binding proteins in the retina of a calbindin-null mutant mouse

Loading next page...
 
/lp/springer-journals/calcium-binding-proteins-in-the-retina-of-a-calbindin-null-mutant-CyZ6LnyHNt
Publisher
Springer Journals
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Human Genetics; Proteomics; Molecular Medicine
ISSN
0302-766X
eISSN
1432-0878
D.O.I.
10.1007/s004410051052
Publisher site
See Article on Publisher Site

Abstract

Calcium-binding proteins are abundantly expressed in many neurons of mammalian retinae. Their physiological roles are, however, largely unknown. This is particularly true for calcium-modulating proteins (“calcium buffers”) such as calbindin D28k. Here, we have studied retinae of wildtype (+/+) and calbindin-null mutant (–/–) mice by using immunocytochemical methods. Although calbindin immunoreactivity was completely absent in the calbindin (–/–) retinae, those cells that express the protein in wildtype retinae, such as horizontal cells, were still present and appeared normal. This was verified by immunostaining horizontal cells for various neurofilament proteins. In order to assess whether other calcium-binding proteins are upregulated in the mutant mouse and may thus compensate for the loss of calbindin, mouse retinae were also immunolabeled for parvalbumin, calretinin, and a calmodulin-like protein (CALP). In no instance could a change in the expression pattern of these proteins be detected by immunocytochemical methods. Thus, our results show that calbindin is not required for the maintenance of the light-microscopic structure of the differentiated retina and suggest roles for this protein in retinal function.

Journal

Cell and Tissue ResearchSpringer Journals

Published: Apr 23, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off