CaaX-prenyltransferases are essential for expression of genes involvedin the early stages of monoterpenoid biosynthetic pathwayin Catharanthus roseus cells

CaaX-prenyltransferases are essential for expression of genes involvedin the early stages of... CaaX-prenyltransferases (CaaX-PTases) catalyse the covalent attachment of isoprenyl groups to conserved cysteine residues located at the C-terminal CaaX motif of a protein substrate. This post-translational modification is required for the function and/or subcellular localization of some transcription factors and components of signal transduction and membrane trafficking machinery. CaaX-PTases, including protein farnesyltransferase (PFT) and type-I protein geranylgeranyltransferase (PGGT-I), are heterodimeric enzymes composed of a common α subunit and a specific β subunit. We have established RNA interference cell lines targeting the β subunits of PFT and PGGT-I, respectively, in the Catharanthus roseus C20D cell line, which synthesizes monoterpenoid indole alkaloids in response to auxin depletion from the culture medium. In both types of RNAi cell lines, expression of a subset of genes involved in the early stage of monoterpenoid biosynthetic pathway (ESMB genes), including the MEP pathway, is strongly decreased. The role of CaaX-PTases in ESMB gene regulation was confirmed by using the general prenyltransferase inhibitor s-perillyl alcohol (SP) and the specific PFT inhibitor Manumycin A on the wild type line. Furthermore, supplementation of SP inhibited cells with monoterpenoid intermediates downstream of the steps encoded by the ESMB genes restores monoterpenoid indole alkaloids biosynthesis. We conclude that protein targets for both PFT and PGGT-I are required for the expression of ESMB genes and monoterpenoid biosynthesis in C. roseus, this represents a non previously described role for protein prenyltransferase in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

CaaX-prenyltransferases are essential for expression of genes involvedin the early stages of monoterpenoid biosynthetic pathwayin Catharanthus roseus cells

Loading next page...
 
/lp/springer-journals/caax-prenyltransferases-are-essential-for-expression-of-genes-aHALxEU5xJ
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-3095-0
Publisher site
See Article on Publisher Site

Abstract

CaaX-prenyltransferases (CaaX-PTases) catalyse the covalent attachment of isoprenyl groups to conserved cysteine residues located at the C-terminal CaaX motif of a protein substrate. This post-translational modification is required for the function and/or subcellular localization of some transcription factors and components of signal transduction and membrane trafficking machinery. CaaX-PTases, including protein farnesyltransferase (PFT) and type-I protein geranylgeranyltransferase (PGGT-I), are heterodimeric enzymes composed of a common α subunit and a specific β subunit. We have established RNA interference cell lines targeting the β subunits of PFT and PGGT-I, respectively, in the Catharanthus roseus C20D cell line, which synthesizes monoterpenoid indole alkaloids in response to auxin depletion from the culture medium. In both types of RNAi cell lines, expression of a subset of genes involved in the early stage of monoterpenoid biosynthetic pathway (ESMB genes), including the MEP pathway, is strongly decreased. The role of CaaX-PTases in ESMB gene regulation was confirmed by using the general prenyltransferase inhibitor s-perillyl alcohol (SP) and the specific PFT inhibitor Manumycin A on the wild type line. Furthermore, supplementation of SP inhibited cells with monoterpenoid intermediates downstream of the steps encoded by the ESMB genes restores monoterpenoid indole alkaloids biosynthesis. We conclude that protein targets for both PFT and PGGT-I are required for the expression of ESMB genes and monoterpenoid biosynthesis in C. roseus, this represents a non previously described role for protein prenyltransferase in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 3, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off