Blood pressure variability: its relevance for cardiovascular homeostasis and cardiovascular diseases

Blood pressure variability: its relevance for cardiovascular homeostasis and cardiovascular diseases Blood pressure (BP) is one of the most dynamic physiologic variables that is routinely measured in clinical practice and is characterized by continuous and significant changes beat-to-beat, over 24 h, day-to-day, and visit-to-visit. Under physiological conditions, these BP variations largely represent a response to environmental stimulations and challenges of daily life aimed at maintaining so-called cardiovascular “homeostasis”. However, sustained increases in blood pressure variability (BPV) may also reflect alterations in cardiovascular regulatory mechanisms or underlying pathological conditions and may represent a source of damage to the cardiovascular system. The clinical significance and prognostic implications of these BP variations have been demonstrated by a series of clinical and population studies conducted in recent years, in which increasing BPV has been associated with a higher risk of subclinical organ damage, cardiovascular events, and cardiovascular and all-cause mortality, independent of elevated average BP values. This paper will review the available evidence on the current definitions, classification, and mechanisms responsible for different types of BPV by focusing on their relevance to cardiovascular homeostasis and cardiovascular disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hypertension Research Springer Journals

Blood pressure variability: its relevance for cardiovascular homeostasis and cardiovascular diseases

Loading next page...
 
/lp/springer-journals/blood-pressure-variability-its-relevance-for-cardiovascular-pRa3nrODLG
Publisher
Springer Journals
Copyright
Copyright © The Japanese Society of Hypertension 2020
ISSN
0916-9636
eISSN
1348-4214
DOI
10.1038/s41440-020-0421-5
Publisher site
See Article on Publisher Site

Abstract

Blood pressure (BP) is one of the most dynamic physiologic variables that is routinely measured in clinical practice and is characterized by continuous and significant changes beat-to-beat, over 24 h, day-to-day, and visit-to-visit. Under physiological conditions, these BP variations largely represent a response to environmental stimulations and challenges of daily life aimed at maintaining so-called cardiovascular “homeostasis”. However, sustained increases in blood pressure variability (BPV) may also reflect alterations in cardiovascular regulatory mechanisms or underlying pathological conditions and may represent a source of damage to the cardiovascular system. The clinical significance and prognostic implications of these BP variations have been demonstrated by a series of clinical and population studies conducted in recent years, in which increasing BPV has been associated with a higher risk of subclinical organ damage, cardiovascular events, and cardiovascular and all-cause mortality, independent of elevated average BP values. This paper will review the available evidence on the current definitions, classification, and mechanisms responsible for different types of BPV by focusing on their relevance to cardiovascular homeostasis and cardiovascular disease.

Journal

Hypertension ResearchSpringer Journals

Published: Mar 13, 2020

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off