Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Biogeography and phenology of oviposition preference and larval performance of Pieris virginiensis butterflies on native and invasive host plants

Biogeography and phenology of oviposition preference and larval performance of Pieris... In invaded environments, formerly reliable cues might no longer be associated with adaptive outcomes and organisms can become trapped by their evolved responses. The invasion of Alliaria petiolata (garlic mustard) into the native habitat of Pieris virginiensis (West Virginia White) is one such example. Female butterflies oviposit on the invasive plant because it is related to their preferred native host plant Cardamine diphylla (toothwort), but larvae are unable to complete development. We have studied the impact of the A. petiolata invasion on P. virginiensis butterflies in the Southeastern USA by comparing oviposition preference and larval survival on both plants in North Carolina (NC) populations without A. petiolata and West Virginia (WV) populations where A. petiolata is present. Larval survival to the 3rd instar was equally low in both populations when raised on A. petiolata. Mean oviposition preference on the two plants also did not differ between populations. However, we found a seasonal effect on preference between early and late season flights within WV populations. Late season females laid 99% of total eggs on A. petiolata while early season females utilized both host plants. Late season females were also less likely to lay eggs than early season females. This change in preference toward A. petiolata could be driven by the early senescence of C. diphylla and suggests a seasonal component to the impact of A. petiolata. Therefore, the already short flight season of P. virginiensis could become further constrained in invaded populations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Invasions Springer Journals

Biogeography and phenology of oviposition preference and larval performance of Pieris virginiensis butterflies on native and invasive host plants

Biological Invasions , Volume 20 (2) – Aug 22, 2017

Loading next page...
 
/lp/springer-journals/biogeography-and-phenology-of-oviposition-preference-and-larval-y0Pd3i0u28

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Life Sciences; Ecology; Freshwater & Marine Ecology; Plant Sciences; Developmental Biology
ISSN
1387-3547
eISSN
1573-1464
DOI
10.1007/s10530-017-1543-9
Publisher site
See Article on Publisher Site

Abstract

In invaded environments, formerly reliable cues might no longer be associated with adaptive outcomes and organisms can become trapped by their evolved responses. The invasion of Alliaria petiolata (garlic mustard) into the native habitat of Pieris virginiensis (West Virginia White) is one such example. Female butterflies oviposit on the invasive plant because it is related to their preferred native host plant Cardamine diphylla (toothwort), but larvae are unable to complete development. We have studied the impact of the A. petiolata invasion on P. virginiensis butterflies in the Southeastern USA by comparing oviposition preference and larval survival on both plants in North Carolina (NC) populations without A. petiolata and West Virginia (WV) populations where A. petiolata is present. Larval survival to the 3rd instar was equally low in both populations when raised on A. petiolata. Mean oviposition preference on the two plants also did not differ between populations. However, we found a seasonal effect on preference between early and late season flights within WV populations. Late season females laid 99% of total eggs on A. petiolata while early season females utilized both host plants. Late season females were also less likely to lay eggs than early season females. This change in preference toward A. petiolata could be driven by the early senescence of C. diphylla and suggests a seasonal component to the impact of A. petiolata. Therefore, the already short flight season of P. virginiensis could become further constrained in invaded populations.

Journal

Biological InvasionsSpringer Journals

Published: Aug 22, 2017

There are no references for this article.