Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Bioenergy potentials from forestry in 2050

Bioenergy potentials from forestry in 2050 The purpose of this study was to evaluate the global energy production potential of woody biomass from forestry for the year 2050 using a bottom-up analysis of key factors. Woody biomass from forestry was defined as all of the aboveground woody biomass of trees, including all products made from woody biomass. This includes the harvesting, processing and use of woody biomass. The projection was performed by comparing the future demand with the future supply of wood, based on existing databases, scenarios, and outlook studies. Specific attention was paid to the impact of the underlying factors that determine this potential and to the gaps and uncertainties in our current knowledge. Key variables included the demand for industrial roundwood and woodfuel, the plantation establishment rates, and the various theoretical, technical, economical, and ecological limitations related to the supply of wood from forests. Forests, as defined in this study, exclude forest plantations. Key uncertainties were the supply of wood from trees outside forests, the future rates of deforestation, the consumption of woodfuel, and the theoretical, technical, economical, or ecological wood production potentials of the forests. Based on a medium demand and medium plantation scenario, the global theoretical potential of the surplus wood supply (i.e., after the demand for woodfuel and industrial roundwood is met) in 2050 was calculated to be 6.1 Gm3 (71 EJ) and the technical potential to be 5.5 Gm3 (64 EJ). In practice, economical considerations further reduced the surplus wood supply from forests to 1.3 Gm3 year−1 (15 EJ year−1). When ecological criteria were also included, the demand for woodfuel and industrial roundwood exceeded the supply by 0.7 Gm3 year−1 (8 EJ year−1). The bioenergy potential from logging and processing residues and waste was estimated to be equivalent to 2.4 Gm3 year−1 (28 EJ year−1) wood, based on a medium demand scenario. These results indicate that forests can, in theory, become a major source of bioenergy, and that the use of this bioenergy can, in theory, be realized without endangering the supply of industrial roundwood and woodfuel and without further deforestation. Regional shortages in the supply of industrial roundwood and woodfuel can, however, occur in some regions, e.g., South Asia and the Middle East and North Africa. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Climatic Change Springer Journals

Bioenergy potentials from forestry in 2050

Climatic Change , Volume 81 (4) – Nov 30, 2006

Loading next page...
 
/lp/springer-journals/bioenergy-potentials-from-forestry-in-2050-AJzLTPThcO

References (74)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Atmospheric Sciences; Climate Change/Climate Change Impacts
ISSN
0165-0009
eISSN
1573-1480
DOI
10.1007/s10584-006-9163-x
Publisher site
See Article on Publisher Site

Abstract

The purpose of this study was to evaluate the global energy production potential of woody biomass from forestry for the year 2050 using a bottom-up analysis of key factors. Woody biomass from forestry was defined as all of the aboveground woody biomass of trees, including all products made from woody biomass. This includes the harvesting, processing and use of woody biomass. The projection was performed by comparing the future demand with the future supply of wood, based on existing databases, scenarios, and outlook studies. Specific attention was paid to the impact of the underlying factors that determine this potential and to the gaps and uncertainties in our current knowledge. Key variables included the demand for industrial roundwood and woodfuel, the plantation establishment rates, and the various theoretical, technical, economical, and ecological limitations related to the supply of wood from forests. Forests, as defined in this study, exclude forest plantations. Key uncertainties were the supply of wood from trees outside forests, the future rates of deforestation, the consumption of woodfuel, and the theoretical, technical, economical, or ecological wood production potentials of the forests. Based on a medium demand and medium plantation scenario, the global theoretical potential of the surplus wood supply (i.e., after the demand for woodfuel and industrial roundwood is met) in 2050 was calculated to be 6.1 Gm3 (71 EJ) and the technical potential to be 5.5 Gm3 (64 EJ). In practice, economical considerations further reduced the surplus wood supply from forests to 1.3 Gm3 year−1 (15 EJ year−1). When ecological criteria were also included, the demand for woodfuel and industrial roundwood exceeded the supply by 0.7 Gm3 year−1 (8 EJ year−1). The bioenergy potential from logging and processing residues and waste was estimated to be equivalent to 2.4 Gm3 year−1 (28 EJ year−1) wood, based on a medium demand scenario. These results indicate that forests can, in theory, become a major source of bioenergy, and that the use of this bioenergy can, in theory, be realized without endangering the supply of industrial roundwood and woodfuel and without further deforestation. Regional shortages in the supply of industrial roundwood and woodfuel can, however, occur in some regions, e.g., South Asia and the Middle East and North Africa.

Journal

Climatic ChangeSpringer Journals

Published: Nov 30, 2006

There are no references for this article.