Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Biodegradation of cellulose acetate/poly(butylene succinate) membrane

Biodegradation of cellulose acetate/poly(butylene succinate) membrane Applying biodegradable polymers in membrane preparation for separation processes is expected to be helpful in solving waste disposal problem. In this study, biodegradable blend membranes of cellulose acetate (CA)/poly(butylene succinate) (PBS) were prepared and the microorganisms possessing the ability of degrading them were isolated from soil. The isolates were classified into two groups of bacteria and fungi. The membranes biodegradation after cultivation by the isolates in liquid media was further confirmed by weight loss measurement, Fourier transform infrared analysis and scanning electron microscopy. Findings revealed that CA degradation could be improved in the blend membrane structure. Moreover, strain BG106 and BG111 could degrade the membranes at the fastest rate among the other bacteria and fungi, respectively. To our knowledge, BG111 was found to belong to Alternaria sp. and this is the first report of its PBS degradation activity. Moreover, the PBS degradability of BG104 (B. Safensis), BG105 (Achromobacter insuavis) and BG106 (Brevibacterium halotolerans) strains was reported for the first time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Environmental Science and Technology Springer Journals

Biodegradation of cellulose acetate/poly(butylene succinate) membrane

Loading next page...
 
/lp/springer-journals/biodegradation-of-cellulose-acetate-poly-butylene-succinate-membrane-rLD0cdlA22

References (27)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Islamic Azad University (IAU)
Subject
Environment; Environment, general; Environmental Science and Engineering; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Soil Science & Conservation; Ecotoxicology
ISSN
1735-1472
eISSN
1735-2630
DOI
10.1007/s13762-016-1220-z
Publisher site
See Article on Publisher Site

Abstract

Applying biodegradable polymers in membrane preparation for separation processes is expected to be helpful in solving waste disposal problem. In this study, biodegradable blend membranes of cellulose acetate (CA)/poly(butylene succinate) (PBS) were prepared and the microorganisms possessing the ability of degrading them were isolated from soil. The isolates were classified into two groups of bacteria and fungi. The membranes biodegradation after cultivation by the isolates in liquid media was further confirmed by weight loss measurement, Fourier transform infrared analysis and scanning electron microscopy. Findings revealed that CA degradation could be improved in the blend membrane structure. Moreover, strain BG106 and BG111 could degrade the membranes at the fastest rate among the other bacteria and fungi, respectively. To our knowledge, BG111 was found to belong to Alternaria sp. and this is the first report of its PBS degradation activity. Moreover, the PBS degradability of BG104 (B. Safensis), BG105 (Achromobacter insuavis) and BG106 (Brevibacterium halotolerans) strains was reported for the first time.

Journal

International Journal of Environmental Science and TechnologySpringer Journals

Published: Jan 3, 2017

There are no references for this article.