Access the full text.
Sign up today, get DeepDyve free for 14 days.
The improved spatial and spectral resolution in the advanced Hyperspectral (HS) sensors results in images with rich information per pixel. Hence, the development of efficient spatial–spectral feature extraction (FE) techniques is very crucial for a proper characterization of the objects on ground. In this paper, an attempt has been made to develop a simple, yet effective spatial–spectral FE algorithm. In the proposed approach, the following steps are performed. First, Principal Component Analysis (PCA) was applied on the original hyperspectral image (HSI) and the most significant principal component was extracted. Then, the Bilateral Filter (BF), which acts as an edge-preserving filter, was applied on the selected principal component to extract kernel for each pixel in HSI. The extracted kernel bank is then applied on the original HSI. As in general, the principal component image is edge informative, and the BF is an edge-preserving filter; therefore, the extracted kernel bank can be applied on the original HSI to extract spatial–spectral features. Finally, with the help of these features, the performance of Support Vector Machine (SVM) classifier is evaluated. The proposed approach is validated on three popular hyperspectral data sets, namely, Indian Pines, Pavia University, and Botswana. The experimental results reveal that learning the edge information from a reference image (in the present context PCA) is quite essential, rather than applying the edge-preserving filters directly on the HSI. Theoretically, this holds true, as a unique edge (ground) information exists for an HSI, while in reality, the edges have variations due to variation in reflectance over bands.
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science – Springer Journals
Published: Sep 6, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.