Automated Diagnosis of Glaucoma Using Digital Fundus Images

Automated Diagnosis of Glaucoma Using Digital Fundus Images Glaucoma is a disease of the optic nerve caused by the increase in the intraocular pressure of the eye. Glaucoma mainly affects the optic disc by increasing the cup size. It can lead to the blindness if it is not detected and treated in proper time. The detection of glaucoma through Optical Coherence Tomography (OCT) and Heidelberg Retinal Tomography (HRT) is very expensive. This paper presents a novel method for glaucoma detection using digital fundus images. Digital image processing techniques, such as preprocessing, morphological operations and thresholding, are widely used for the automatic detection of optic disc, blood vessels and computation of the features. We have extracted features such as cup to disc (c/d) ratio, ratio of the distance between optic disc center and optic nerve head to diameter of the optic disc, and the ratio of blood vessels area in inferior-superior side to area of blood vessel in the nasal-temporal side. These features are validated by classifying the normal and glaucoma images using neural network classifier. The results presented in this paper indicate that the features are clinically significant in the detection of glaucoma. Our system is able to classify the glaucoma automatically with a sensitivity and specificity of 100% and 80% respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Systems Springer Journals

Automated Diagnosis of Glaucoma Using Digital Fundus Images

Loading next page...
 
/lp/springer-journals/automated-diagnosis-of-glaucoma-using-digital-fundus-images-0PgqcCef3B
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Statistics; Health Informatics; Statistics for Life Sciences, Medicine, Health Sciences
ISSN
0148-5598
eISSN
1573-689X
DOI
10.1007/s10916-008-9195-z
Publisher site
See Article on Publisher Site

Abstract

Glaucoma is a disease of the optic nerve caused by the increase in the intraocular pressure of the eye. Glaucoma mainly affects the optic disc by increasing the cup size. It can lead to the blindness if it is not detected and treated in proper time. The detection of glaucoma through Optical Coherence Tomography (OCT) and Heidelberg Retinal Tomography (HRT) is very expensive. This paper presents a novel method for glaucoma detection using digital fundus images. Digital image processing techniques, such as preprocessing, morphological operations and thresholding, are widely used for the automatic detection of optic disc, blood vessels and computation of the features. We have extracted features such as cup to disc (c/d) ratio, ratio of the distance between optic disc center and optic nerve head to diameter of the optic disc, and the ratio of blood vessels area in inferior-superior side to area of blood vessel in the nasal-temporal side. These features are validated by classifying the normal and glaucoma images using neural network classifier. The results presented in this paper indicate that the features are clinically significant in the detection of glaucoma. Our system is able to classify the glaucoma automatically with a sensitivity and specificity of 100% and 80% respectively.

Journal

Journal of Medical SystemsSpringer Journals

Published: Aug 9, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off