Access the full text.
Sign up today, get DeepDyve free for 14 days.
Pan Chen, Y. Nishiyama, J. Putaux, K. Mazeau (2014)
Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulationCellulose, 21
Olgun Guvench, Elizabeth Hatcher, R. Venable, R. Pastor, Alexander MacKerell (2009)
CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses.Journal of chemical theory and computation, 5 9
C. Oostenbrink, A. Villa, A. Mark, W. Gunsteren (2004)
A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6Journal of Computational Chemistry, 25
Jodi Hadden, A. French, R. Woods (2013)
Unraveling cellulose microfibrils: a twisted tale.Biopolymers, 99 10
J. Matthews, C. Skopec, P. Mason, P. Zuccato, R. Torget, J. Sugiyama, M. Himmel, J. Brady (2006)
Computer simulation studies of microcrystalline cellulose IβCarbohydrate Research, 341
Pan Chen, Y. Nishiyama, K. Mazeau (2012)
Torsional Entropy at the Origin of the Reversible Temperature-Induced Phase Transition of CelluloseMacromolecules, 45
Qiong Zhang, V. Bulone, H. Ågren, Yaoquan Tu (2011)
A molecular dynamics study of the thermal response of crystalline cellulose IβCellulose, 18
W. Humphrey, A. Dalke, K. Schulten (1996)
VMD: visual molecular dynamics.Journal of molecular graphics, 14 1
T. Darden, D. York, L. Pedersen (1993)
Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systemsJournal of Chemical Physics, 98
H. Berendsen, J. Postma, W. Gunsteren, A. Dinola, J. Haak (1984)
Molecular dynamics with coupling to an external bathJournal of Chemical Physics, 81
Malin Bergenstråhle, L. Berglund, K. Mazeau (2007)
Thermal response in crystalline Ibeta cellulose: a molecular dynamics study.The journal of physical chemistry. B, 111 30
P. Langan, Y. Nishiyama, H. Chanzy (2001)
X-ray structure of mercerized cellulose II at 1 a resolution.Biomacromolecules, 2 2
Y. Nishiyama, P. Langan, H. Chanzy (2002)
Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction.Journal of the American Chemical Society, 124 31
R. Viëtor, K. Mazeau, M. Lakin, S. Pérez (2000)
A priori crystal structure prediction of native celluloses.Biopolymers, 54 5
J. Gasteiger, M. Marsili (1980)
ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGESTetrahedron, 36
B. Hess, H. Bekker, H. Berendsen, J. Fraaije (1997)
LINCS: A linear constraint solver for molecular simulationsJournal of Computational Chemistry, 18
J. Matthews, G. Beckham, Malin Bergenstråhle-Wohlert, J. Brady, M. Himmel, M. Crowley (2012)
Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.Journal of chemical theory and computation, 8 2
M. Wada, H. Chanzy, Y. Nishiyama, P. Langan (2004)
Cellulose IIII Crystal Structure and Hydrogen Bonding by Synchrotron X-ray and Neutron Fiber DiffractionMacromolecules, 37
Alexander MacKerell (2004)
Empirical force fields for biological macromolecules: Overview and issuesJournal of Computational Chemistry, 25
T. Bučko, D. Tunega, J. Ángyán, J. Hafner (2011)
Ab initio study of structure and interconversion of native cellulose phases.The journal of physical chemistry. A, 115 35
I. Diddens, B. Murphy, M. Krisch, M. Müller (2008)
Anisotropic Elastic Properties of Cellulose Measured Using Inelastic X-ray ScatteringMacromolecules, 41
K. Mazeau (2005)
Structural Micro-heterogeneities of Crystalline Iβ-celluloseCellulose, 12
Lukas Schuler, X. Daura, W. Gunsteren (2001)
An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phaseJournal of Computational Chemistry, 22
R. Lins, P. Hünenberger (2005)
A new GROMOS force field for hexopyranose‐based carbohydratesJournal of Computational Chemistry, 26
B. Foley, Matthew Tessier, R. Woods (2012)
Carbohydrate force fieldsWiley Interdisciplinary Reviews: Computational Molecular Science, 2
Y. Nishiyama, G. Johnson, A. French (2012)
Diffraction from nonperiodic models of cellulose crystalsCellulose, 19
J. Nelder, R. Mead (1965)
A Simplex Method for Function MinimizationComput. J., 7
W. Gunsteren, D. Bakowies, R. Baron, I. Chandrasekhar, M. Christen, X. Daura, P. Gee, D. Geerke, A. Glättli, P. Hünenberger, Mika Kastenholz, C. Oostenbrink, M. Schenk, D. Trzesniak, N. Vegt, Haibo Yu (2006)
Biomolecular modeling: Goals, problems, perspectives.Angewandte Chemie, 45 25
J. Taylor, J. Rowlinson (1955)
The thermodynamic properties of aqueous solutions of glucoseTransactions of The Faraday Society, 51
J. Koehler, W. Saenger, W. Gunsteren (1987)
A molecular dynamics simulation of crystalline α-cyclodextrin hexahydrateEuropean Biophysics Journal, 15
T. Bučko, J. Hafner, S. Lebègue, J. Ángyán (2010)
Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections.The journal of physical chemistry. A, 114 43
L. Dunfield, A. Burgess, H. Scheraga (1978)
Energy parameters in polypeptides. 8. Empirical potential energy algorithm for the conformational analysis of large moleculesThe Journal of Physical Chemistry, 82
R. Hockney, S. Goel, J. Eastwood (1974)
Quiet high resolution computer models of a plasmaJournal of Computational Physics, 14
B. Hess, Carsten Kutzner, D. Spoel, E. Lindahl (2008)
GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.Journal of chemical theory and computation, 4 3
Halvor Hansen, P. Hünenberger (2011)
A reoptimized GROMOS force field for hexopyranose‐based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformersJournal of Computational Chemistry, 32
L. Kroon-Batenburg, J. Kroon (1997)
The crystal and molecular structures of cellulose I and IIGlycoconjugate Journal, 14
K. Kirschner, Austin Yongye, Sarah Tschampel, Jorge González-Outeiriño, C. Daniels, B. Foley, R. Woods (2008)
GLYCAM06: A generalizable biomolecular force field. CarbohydratesJournal of Computational Chemistry, 29
G. Bussi, D. Donadio, M. Parrinello (2007)
Canonical sampling through velocity rescaling.The Journal of chemical physics, 126 1
S. Eichhorn, G. Davies (2006)
Modelling the crystalline deformation of native and regenerated celluloseCellulose, 13
M. Wada (2002)
Lateral thermal expansion of cellulose Iβ and IIII polymorphsJournal of Polymer Science Part B, 40
The influence of the non-bonded parameters, i.e., Lennard-Jones and the partial atomic charges, on the predicted unit cell dimensions of different allomorphs of cellulose were studied in the framework of the GROMOS force field. Systematic variation of partial atomic charges revealed the particular importance of charge distribution at the proximity of glycosidic linkage to the monoclinic angles. Furthermore, the unit cell parameters were better predicted when the repulsive term of the united atom CH1 (carbon atoms bearing one hydrogen) was optimized. The a-axis of cellulose Iβ was over estimated by more than 7 and 8.3 % in GROMOS-53A6 and GROMOS-56Acarbo respectively, but gave prediction within 0.2 % from experimental value, i.e. within experimental accuracy, when the CH1 repulsion term was optimized and CHARMM charge set was imported. At the same time, the average deviation from experimental values of the lattice parameters of four allomorphs was improved from 2.36 to 1.18 % for GROMOS-53a6 and from 2.53 to 1.75 % for GROMOS-56Acarbo.
Cellulose – Springer Journals
Published: May 8, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.