Assessment of anisotropic hardening models for conventional deep drawing processes

Assessment of anisotropic hardening models for conventional deep drawing processes Assessing the predictive capabilities of recent advanced constitutive modelling approaches for processes with industrial complexity is a challenging task. Real process conditions such as blankholder pressure distribution, friction and tool elasticity sensitively affect experimental observations, making the isolation of constitutive effects difficult. A systematic approach is proposed in this work to assess the performance of anisotropic hardening models with the least possible disturbance from process conditions. Two deep drawing examples were used for these purpose (“cross die” and “lackfrosch”) in conjunction with a mild steel (DC05). Optically measured strain distributions have been compared to corresponding simulations, which have been calibrated to accurately match the measured blank draw-in. The effect of initial yield locus shape as well as anisotropic hardening effects have been discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Material Forming Springer Journals

Assessment of anisotropic hardening models for conventional deep drawing processes

Loading next page...
 
/lp/springer-journals/assessment-of-anisotropic-hardening-models-for-conventional-deep-Lxmnf5vpz8
Publisher
Springer Paris
Copyright
Copyright © 2016 by Springer-Verlag France
Subject
Engineering; Operating Procedures, Materials Treatment; Materials Science, general; Manufacturing, Machines, Tools; Mechanical Engineering; Computational Intelligence; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
1960-6206
eISSN
1960-6214
D.O.I.
10.1007/s12289-016-1306-7
Publisher site
See Article on Publisher Site

Abstract

Assessing the predictive capabilities of recent advanced constitutive modelling approaches for processes with industrial complexity is a challenging task. Real process conditions such as blankholder pressure distribution, friction and tool elasticity sensitively affect experimental observations, making the isolation of constitutive effects difficult. A systematic approach is proposed in this work to assess the performance of anisotropic hardening models with the least possible disturbance from process conditions. Two deep drawing examples were used for these purpose (“cross die” and “lackfrosch”) in conjunction with a mild steel (DC05). Optically measured strain distributions have been compared to corresponding simulations, which have been calibrated to accurately match the measured blank draw-in. The effect of initial yield locus shape as well as anisotropic hardening effects have been discussed.

Journal

International Journal of Material FormingSpringer Journals

Published: Jul 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off