Assessing the prospects of genome-wide association studies performed in inbred mice

Assessing the prospects of genome-wide association studies performed in inbred mice The remarkable success in mapping genes linked to a number of disease traits using genome-wide association studies (GWAS) in human cohorts has renewed interest in applying this same technique in model organisms such as inbred laboratory mice. Unlike humans, however, the limited genetic diversity in the ancestry of laboratory mice combined with selection pressure over the past decades have yielded an intricate population genetic structure that can complicate the results obtained from association studies. This problem is further exacerbated by the small number of strains typically used in such studies where multiple spurious associations arise as a result of random chance. We sought to empirically assess the viability of GWAS in inbred mice using hundreds of expression traits for which the true location of the expression quantitative trait locus was known a priori. We then measured transcript abundance levels for these expression traits in 16 classical and 3 wild-derived inbred strains and carried out a genome-wide association scan, demonstrating the low statistical power of such studies and empirically estimating the large extent to which allelic association of transcripts gives rise to spurious associations. We provide evidence illustrating that in a large fraction of cases, the marker with the most significant p values fails to map to the location of the true eQTL. Finally, we provide experimental support for hundreds of traits, and that combining linkage analysis with association mapping provides significant increases in statistical power over a stand-alone GWAS as well as significantly higher mapping resolution than either study alone. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Assessing the prospects of genome-wide association studies performed in inbred mice

Loading next page...
 
/lp/springer-journals/assessing-the-prospects-of-genome-wide-association-studies-performed-glAv6F8eun
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-010-9249-7
Publisher site
See Article on Publisher Site

Abstract

The remarkable success in mapping genes linked to a number of disease traits using genome-wide association studies (GWAS) in human cohorts has renewed interest in applying this same technique in model organisms such as inbred laboratory mice. Unlike humans, however, the limited genetic diversity in the ancestry of laboratory mice combined with selection pressure over the past decades have yielded an intricate population genetic structure that can complicate the results obtained from association studies. This problem is further exacerbated by the small number of strains typically used in such studies where multiple spurious associations arise as a result of random chance. We sought to empirically assess the viability of GWAS in inbred mice using hundreds of expression traits for which the true location of the expression quantitative trait locus was known a priori. We then measured transcript abundance levels for these expression traits in 16 classical and 3 wild-derived inbred strains and carried out a genome-wide association scan, demonstrating the low statistical power of such studies and empirically estimating the large extent to which allelic association of transcripts gives rise to spurious associations. We provide evidence illustrating that in a large fraction of cases, the marker with the most significant p values fails to map to the location of the true eQTL. Finally, we provide experimental support for hundreds of traits, and that combining linkage analysis with association mapping provides significant increases in statistical power over a stand-alone GWAS as well as significantly higher mapping resolution than either study alone.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 5, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off