Approaches for refining heterologous protein production in filamentous fungi

Approaches for refining heterologous protein production in filamentous fungi Fungi combine the advantages of a microbial system such as a simple fermentability with the capability of secreting proteins that are modified according to a general eukaryotic scheme. Filamentous fungi such as Aspergillus niger efficiently secrete genuine proteins but the secretion of recombinant proteins turned out be a difficult task. Aspergillus niger is an attractive organism because of its high secretion capacity and is frequently used as a model organism. Whereas high production yields can be obtained when homologous proteins are expressed, much lower amounts are obtained with the production of heterologous proteins. To fully exploit the potential of filamentous fungi, understanding of the molecular genetics, their physiology, and the glycosylation metabolism has to be investigated and clarified in more detail. This review summarizes recent developments in heterologous protein production by filamentous fungi and also generalizes the possibilities of improving the protein production by various genetic and bioprocessing approaches, thereby easing recognition of filamentous fungi as a relevant and reliable expression platform. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png World Journal of Microbiology and Biotechnology Springer Journals

Approaches for refining heterologous protein production in filamentous fungi

Loading next page...
 
/lp/springer-journals/approaches-for-refining-heterologous-protein-production-in-filamentous-o0qYC8N4GF
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Chemistry; Microbiology ; Environmental Engineering/Biotechnology; Applied Microbiology; Biochemistry, general; Biotechnology
ISSN
0959-3993
eISSN
1573-0972
D.O.I.
10.1007/s11274-009-0128-x
Publisher site
See Article on Publisher Site

Abstract

Fungi combine the advantages of a microbial system such as a simple fermentability with the capability of secreting proteins that are modified according to a general eukaryotic scheme. Filamentous fungi such as Aspergillus niger efficiently secrete genuine proteins but the secretion of recombinant proteins turned out be a difficult task. Aspergillus niger is an attractive organism because of its high secretion capacity and is frequently used as a model organism. Whereas high production yields can be obtained when homologous proteins are expressed, much lower amounts are obtained with the production of heterologous proteins. To fully exploit the potential of filamentous fungi, understanding of the molecular genetics, their physiology, and the glycosylation metabolism has to be investigated and clarified in more detail. This review summarizes recent developments in heterologous protein production by filamentous fungi and also generalizes the possibilities of improving the protein production by various genetic and bioprocessing approaches, thereby easing recognition of filamentous fungi as a relevant and reliable expression platform.

Journal

World Journal of Microbiology and BiotechnologySpringer Journals

Published: Aug 2, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off