Application of raman spectroscopy to monitor and quantify ethyl esters in soybean oil transesterification

Application of raman spectroscopy to monitor and quantify ethyl esters in soybean oil... Biodiesel (FA esters) has become very attractive as an alternative diesel fuel owing to its environmental benefits. Transesterification is the most usual and important method to make biodiesel from vegetable oils. This article investigates the potential for using Raman spectroscopy to monitor and quantify the transesterification of soybean oil to yield ethyl esters. The differences observed in the Raman spectra of soybean oil after transesterification were a peak at 2932 cm−1 ( $$v_{CH_2 }$$ ), the displacement of the v C=O band from 1748 to 1739 cm−1, and the bands at 861 (v R-C=O and v C-C) and 372 cm−1 (δ CO-O-C). Uni- and multivariate analysis methods were used to build several analytical curves and then applied in known samples, treated as unknowns, to test their ability to predict concentrations. The best results were achieved by Raman/PLS calibration models (where PLS=partial least squares regression) using an internal normalization standard (v =C-H band). The correlation coefficient (R 2) values so obtained were 0.9985 for calibration and 0.9977 for validation. Univariate regression analysis between biodiesel concentration and the increasing intensity of $$v_{CH_2 }$$ band or v C=O displacement showed R 2 values of 0.9983 and 0.9742, respectively. Although spectroscopic methods are less sensitive than chromatographic ones, the data obtained by spectroscopy can be correlated with other techniques, allowing biodiesel yield and quality to be quickly assessed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Oil Chemists' Society Springer Journals

Application of raman spectroscopy to monitor and quantify ethyl esters in soybean oil transesterification

Loading next page...
 
/lp/springer-journals/application-of-raman-spectroscopy-to-monitor-and-quantify-ethyl-esters-jtvT5NPLpS
Publisher
Springer Journals
Copyright
Copyright © 2006 by AOCS Press
Subject
Chemistry; Chemistry/Food Science, general; Analytical Chemistry; Biotechnology; Industrial Chemistry/Chemical Engineering; Biomaterials; Agriculture
ISSN
0003-021X
eISSN
1558-9331
D.O.I.
10.1007/s11746-006-1244-5
Publisher site
See Article on Publisher Site

Abstract

Biodiesel (FA esters) has become very attractive as an alternative diesel fuel owing to its environmental benefits. Transesterification is the most usual and important method to make biodiesel from vegetable oils. This article investigates the potential for using Raman spectroscopy to monitor and quantify the transesterification of soybean oil to yield ethyl esters. The differences observed in the Raman spectra of soybean oil after transesterification were a peak at 2932 cm−1 ( $$v_{CH_2 }$$ ), the displacement of the v C=O band from 1748 to 1739 cm−1, and the bands at 861 (v R-C=O and v C-C) and 372 cm−1 (δ CO-O-C). Uni- and multivariate analysis methods were used to build several analytical curves and then applied in known samples, treated as unknowns, to test their ability to predict concentrations. The best results were achieved by Raman/PLS calibration models (where PLS=partial least squares regression) using an internal normalization standard (v =C-H band). The correlation coefficient (R 2) values so obtained were 0.9985 for calibration and 0.9977 for validation. Univariate regression analysis between biodiesel concentration and the increasing intensity of $$v_{CH_2 }$$ band or v C=O displacement showed R 2 values of 0.9983 and 0.9742, respectively. Although spectroscopic methods are less sensitive than chromatographic ones, the data obtained by spectroscopy can be correlated with other techniques, allowing biodiesel yield and quality to be quickly assessed.

Journal

Journal of the American Oil Chemists' SocietySpringer Journals

Published: Nov 16, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off