Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract This research furthers the development of a closed-form solution to the angles-only initial relative orbit determination problem for non-cooperative target close-in proximity operations when the camera offset from the vehicle center-of-mass allows for range observability. In previous work, the solution to this problem had been shown to be non-global optimal in the sense of least square and had only been discussed in the context of Clohessy-Wiltshire. In this paper, the emphasis is placed on developing a more compact and improved solution to the problem by using state augmentation least square method in the context of the Clohessy-Wiltshire and Tschauner-Hempel dynamics, derivation of corresponding error covariance, and performance analysis for typical rendezvous missions. A two-body Monte Carlo simulation system is used to evaluate the performance of the solution. The sensitivity of the solution accuracy to camera offset, observation period, and the number of observations are presented and discussed.
Astrodynamics – Springer Journals
Published: Sep 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.