An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline

An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for... In this study an impedance aptasensor was designed for sensitive, selective, and fast detection of tetracycline (TET) based on an interdigital array microelectrode (IDAM). The IDAM was integrated with impedance detection to miniaturize the conventional electrodes, enhance the sensitivity, shorten the detection time, and minimize interfering effects of non-target analytes in the solution. Due to their excellent conductivity, good biocompatibility, the multi-walled carbon nanotubes (MWCNTs) were used to modify the IDAM to immobilize TET aptamer effectively. The proposed aptasensor produced a sensitive impedance change which was characterized by the electrochemical impedance spectroscopy (EIS). With the addition of TET, the formation of TET–aptamer complex on the surface of MWCNTs modified electrode resulted in an increase of electron transfer resistance (R et). The change of R et depends on the concentration of TET, which is applied for the quantification of TET. A wide linear range was obtained from 10−9 to 10−3 M. The linear regression equation was y(ΔR) = 21.310 × x(LogC) (M) + 217.25. It was successfully applied to detect TET in real milk samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bioprocess and Biosystems Engineering Springer Journals

An interdigital array microelectrode aptasensor based on multi-walled carbon nanotubes for detection of tetracycline

Loading next page...
 
/lp/springer-journals/an-interdigital-array-microelectrode-aptasensor-based-on-multi-walled-dHUes0S5A4
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Chemistry; Biotechnology; Industrial and Production Engineering; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering; Food Science
ISSN
1615-7591
eISSN
1615-7605
D.O.I.
10.1007/s00449-017-1799-6
Publisher site
See Article on Publisher Site

Abstract

In this study an impedance aptasensor was designed for sensitive, selective, and fast detection of tetracycline (TET) based on an interdigital array microelectrode (IDAM). The IDAM was integrated with impedance detection to miniaturize the conventional electrodes, enhance the sensitivity, shorten the detection time, and minimize interfering effects of non-target analytes in the solution. Due to their excellent conductivity, good biocompatibility, the multi-walled carbon nanotubes (MWCNTs) were used to modify the IDAM to immobilize TET aptamer effectively. The proposed aptasensor produced a sensitive impedance change which was characterized by the electrochemical impedance spectroscopy (EIS). With the addition of TET, the formation of TET–aptamer complex on the surface of MWCNTs modified electrode resulted in an increase of electron transfer resistance (R et). The change of R et depends on the concentration of TET, which is applied for the quantification of TET. A wide linear range was obtained from 10−9 to 10−3 M. The linear regression equation was y(ΔR) = 21.310 × x(LogC) (M) + 217.25. It was successfully applied to detect TET in real milk samples.

Journal

Bioprocess and Biosystems EngineeringSpringer Journals

Published: Jul 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off