Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An inertial method for split equality common f,g-fixed point problems of f,g-pseudocontractive mappings in reflexive real Banach spaces

An inertial method for split equality common f,g-fixed point problems of f,g-pseudocontractive... The purpose of this study is to introduce an inertial algorithm for approximating a solution of the split equality common f,g-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f, g-$$\end{document}fixed point problem in reflexive real Banach spaces. We have established a strong convergence result under the assumption that the underlying mappings are uniformly continuous f,g-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f, g -$$\end{document}pseudocontractive. Finally, a numerical example is provided to demonstrate the effectiveness of the algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Analysis Springer Journals

An inertial method for split equality common f,g-fixed point problems of f,g-pseudocontractive mappings in reflexive real Banach spaces

Loading next page...
 
/lp/springer-journals/an-inertial-method-for-split-equality-common-f-g-fixed-point-problems-prFRXZsMPi
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to The Forum D’Analystes 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0971-3611
eISSN
2367-2501
DOI
10.1007/s41478-022-00489-9
Publisher site
See Article on Publisher Site

Abstract

The purpose of this study is to introduce an inertial algorithm for approximating a solution of the split equality common f,g-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f, g-$$\end{document}fixed point problem in reflexive real Banach spaces. We have established a strong convergence result under the assumption that the underlying mappings are uniformly continuous f,g-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f, g -$$\end{document}pseudocontractive. Finally, a numerical example is provided to demonstrate the effectiveness of the algorithm.

Journal

The Journal of AnalysisSpringer Journals

Published: Sep 19, 2022

Keywords: Banach spaces; Bregman distance; f-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f-$$\end{document}fixed points; f-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f -$$\end{document}pseudocontractive mapping; Maximal monotone mapping; Split equality; Strong convergence; Uniform continuity; 46N10; 47H05; 47H09; 47H10; 47J05; 47J25; 90C25

References