An experimental study on the thermal performance of a concentric annular heat pipe

An experimental study on the thermal performance of a concentric annular heat pipe Concentric annular heat pipes (CAHP) were fabricated and tested to investigate their thermal characteristics. The CAHPs were 25.4 mm in outer diameter and 200 mm in length. The inner surface of the heat pipes was covered with screen mesh wicks and they were connected by four bridge wicks to provide liquid return path. Three different heat pipes were fabricated to observe the effect of change in diameter ratios between 2.31 and 4.23 while using the same outer tube dimensions. The major concern of this study was the transient response as well as isothermal characteristics of the heat pipe outer surface, considering the application as uniform heating device. A better performance was achieved as the diameter ratio increased. For the thermal load of 180 W, the maximum temperature difference on the outer surface in the axial direction of CAHP was 2.3°C while that of the copper block of the same outer dimension was 5.9°C. The minimum thermal resistance of the CAHP was measured to be 0.04°C/W. In regard to the transient response during start-up, the heat pipe showed almost no time lag to the heat source, while the copper block of the same outer dimensions exhibited about 25 min time lag. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Mechanical Science and Technology Springer Journals

An experimental study on the thermal performance of a concentric annular heat pipe

Loading next page...
 
/lp/springer-journals/an-experimental-study-on-the-thermal-performance-of-a-concentric-cLkmZksx0K
Publisher
Korean Society of Mechanical Engineers
Copyright
Copyright © 2005 by The Korean Society of Mechanical Engineers (KSME)
Subject
Engineering; Mechanical Engineering; Vibration, Dynamical Systems, Control; Industrial and Production Engineering
ISSN
1738-494X
D.O.I.
10.1007/BF02919187
Publisher site
See Article on Publisher Site

Abstract

Concentric annular heat pipes (CAHP) were fabricated and tested to investigate their thermal characteristics. The CAHPs were 25.4 mm in outer diameter and 200 mm in length. The inner surface of the heat pipes was covered with screen mesh wicks and they were connected by four bridge wicks to provide liquid return path. Three different heat pipes were fabricated to observe the effect of change in diameter ratios between 2.31 and 4.23 while using the same outer tube dimensions. The major concern of this study was the transient response as well as isothermal characteristics of the heat pipe outer surface, considering the application as uniform heating device. A better performance was achieved as the diameter ratio increased. For the thermal load of 180 W, the maximum temperature difference on the outer surface in the axial direction of CAHP was 2.3°C while that of the copper block of the same outer dimension was 5.9°C. The minimum thermal resistance of the CAHP was measured to be 0.04°C/W. In regard to the transient response during start-up, the heat pipe showed almost no time lag to the heat source, while the copper block of the same outer dimensions exhibited about 25 min time lag.

Journal

Journal of Mechanical Science and TechnologySpringer Journals

Published: Apr 1, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off