Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An elementary best proximity point theorem in metric spaces

An elementary best proximity point theorem in metric spaces Let us consider two nonempty compact subsets A and B of a metric space X and a continuous mapping f:A∪B→A∪B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f:A\cup B\rightarrow A\cup B$$\end{document} satisfying f(A)⊆B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f(A)\subseteq B$$\end{document}, f(B)⊆A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f(B)\subseteq A$$\end{document}. In this manuscript, we provide sufficient conditions for the existence of a point x0∈A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$x_0\in A$$\end{document} holding the condition that d(x0,fx0)=inf{d(a,b):a∈A,b∈B}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d(x_0,fx_0)=\inf \{d(a,b):a\in A,b\in B\}$$\end{document}. When A=B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A=B$$\end{document}, our main result reduces to the well-known fixed point theorem for continuous mapping (Lemma 1) in metric spaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Analysis Springer Journals

An elementary best proximity point theorem in metric spaces

The Journal of Analysis , Volume OnlineFirst – Sep 29, 2022

Loading next page...
 
/lp/springer-journals/an-elementary-best-proximity-point-theorem-in-metric-spaces-Lwn0rOWFZy
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to The Forum D’Analystes 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0971-3611
eISSN
2367-2501
DOI
10.1007/s41478-022-00508-9
Publisher site
See Article on Publisher Site

Abstract

Let us consider two nonempty compact subsets A and B of a metric space X and a continuous mapping f:A∪B→A∪B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f:A\cup B\rightarrow A\cup B$$\end{document} satisfying f(A)⊆B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f(A)\subseteq B$$\end{document}, f(B)⊆A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f(B)\subseteq A$$\end{document}. In this manuscript, we provide sufficient conditions for the existence of a point x0∈A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$x_0\in A$$\end{document} holding the condition that d(x0,fx0)=inf{d(a,b):a∈A,b∈B}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d(x_0,fx_0)=\inf \{d(a,b):a\in A,b\in B\}$$\end{document}. When A=B\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A=B$$\end{document}, our main result reduces to the well-known fixed point theorem for continuous mapping (Lemma 1) in metric spaces.

Journal

The Journal of AnalysisSpringer Journals

Published: Sep 29, 2022

Keywords: Fixed point; ε-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon -$$\end{document}close mapping; P-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P-$$\end{document}property; UC-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$UC-$$\end{document}property; Best proximity point

References