An approach to countersink depth control in the drilling of thin-wall stacked structures with low stiffness

An approach to countersink depth control in the drilling of thin-wall stacked structures with low... The deformation of thin-wall stacked structures with low stiffness has been a common problem in the aircraft assembly process, making it difficult to achieve tight tolerance of the countersink depth in one-shot stack drilling. This difficulty is attributed to the complex tool position relative to the workpiece during the machining process. In this paper, an approach to countersink depth control composed of real measurement of the workpiece deformation and compensation of the tool position is presented. The deformation of the workpiece is divided into the following two categories: the rotation angle perpendicular to the feed direction and the deformation along the feed direction. These types of deformation are analysed regarding their influence on the countersink depth error. Effective measures are taken to ensure the countersink depth accuracy; such measures include the adjustment of the normal vector of the drilling position after the clamping process, the error monitoring of the normal vector during machining, and the multi-level compensation during machining. Theoretical analysis and validation of the proposed solution via comparative experiments showed a clear understanding of the coupled interaction of the thrust force with the workpiece deformation and corresponding reduction in the countersink depth error. The compensation solution requires simple computation and is straightforward to implement in industrial automatic drilling applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

An approach to countersink depth control in the drilling of thin-wall stacked structures with low stiffness

Loading next page...
 
/lp/springer-journals/an-approach-to-countersink-depth-control-in-the-drilling-of-thin-wall-ayr11VqhZh
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1234-9
Publisher site
See Article on Publisher Site

Abstract

The deformation of thin-wall stacked structures with low stiffness has been a common problem in the aircraft assembly process, making it difficult to achieve tight tolerance of the countersink depth in one-shot stack drilling. This difficulty is attributed to the complex tool position relative to the workpiece during the machining process. In this paper, an approach to countersink depth control composed of real measurement of the workpiece deformation and compensation of the tool position is presented. The deformation of the workpiece is divided into the following two categories: the rotation angle perpendicular to the feed direction and the deformation along the feed direction. These types of deformation are analysed regarding their influence on the countersink depth error. Effective measures are taken to ensure the countersink depth accuracy; such measures include the adjustment of the normal vector of the drilling position after the clamping process, the error monitoring of the normal vector during machining, and the multi-level compensation during machining. Theoretical analysis and validation of the proposed solution via comparative experiments showed a clear understanding of the coupled interaction of the thrust force with the workpiece deformation and corresponding reduction in the countersink depth error. The compensation solution requires simple computation and is straightforward to implement in industrial automatic drilling applications.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off