Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An activated by cobalt alkaline aminopeptidase from Bacillus mycoides

An activated by cobalt alkaline aminopeptidase from Bacillus mycoides An intracellular arginine—specific aminopeptidase synthesized by Bacillus mycoides was purified and characterized. The purification procedure for studied aminopeptidase consisted of ammonium sulphate precipitation and three chromatographic steps: anion exchange chromatography and gel permeation chromatography. A molecular weight of ∼50 kDa was estimated for the aminopeptidase by gel permeation chromatography and SDS-PAGE. The optimal activity of the enzyme on arginyl-β-naphthylamide as a substrate was at 37°C and pH 9.0. The enzyme showed maximum specificity for basic amino acids: such as Arg and Lys but was also able to hydrolyze aromatic amino acids: Trp, Tyr, and Phe. Co2+ ions activated the enzyme, while Zn2+, Cu2+, Hg2+ and Mn2+ inhibited it. The enzyme is a metalloaminopeptidase whose activity is inhibited by typical metalloaminopeptidase inhibitors: EDTA and 1,10-phenanthroline. Analysis of fragments of the amino acid sequence of the purified enzyme demonstrated high similarity to Amp S of Bacillus cereus and APII of B. thuringensis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Microbiology Springer Journals

An activated by cobalt alkaline aminopeptidase from Bacillus mycoides

Loading next page...
 
/lp/springer-journals/an-activated-by-cobalt-alkaline-aminopeptidase-from-bacillus-mycoides-kMDyQh0yd1

References (27)

Publisher
Springer Journals
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Medical Microbiology ; Microbiology ; Biochemistry, general
ISSN
0003-6838
eISSN
1608-3024
DOI
10.1134/S0003683811020050
Publisher site
See Article on Publisher Site

Abstract

An intracellular arginine—specific aminopeptidase synthesized by Bacillus mycoides was purified and characterized. The purification procedure for studied aminopeptidase consisted of ammonium sulphate precipitation and three chromatographic steps: anion exchange chromatography and gel permeation chromatography. A molecular weight of ∼50 kDa was estimated for the aminopeptidase by gel permeation chromatography and SDS-PAGE. The optimal activity of the enzyme on arginyl-β-naphthylamide as a substrate was at 37°C and pH 9.0. The enzyme showed maximum specificity for basic amino acids: such as Arg and Lys but was also able to hydrolyze aromatic amino acids: Trp, Tyr, and Phe. Co2+ ions activated the enzyme, while Zn2+, Cu2+, Hg2+ and Mn2+ inhibited it. The enzyme is a metalloaminopeptidase whose activity is inhibited by typical metalloaminopeptidase inhibitors: EDTA and 1,10-phenanthroline. Analysis of fragments of the amino acid sequence of the purified enzyme demonstrated high similarity to Amp S of Bacillus cereus and APII of B. thuringensis.

Journal

Applied Biochemistry and MicrobiologySpringer Journals

Published: Mar 9, 2011

There are no references for this article.