Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program

Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the... Simulations using a biochemically-based model of leaf photosynthesis make it possible to predict the distribution of leaf nitrogen contents that maximizes photosynthetic carbon gain over the canopy of an entire plant. In general, the optimal nitrogen content increased with increasing daily photosynthetically active photon irradiance. Leaf aging in natural environments tended to produce leaf nitrogen contents that were similar to the optimal values but somewhat more clustered. Nitrogen redistribution over the duration of a leaf involves costs that are smaller than the benefits in increased photosynthesis. The costs could become larger than the benefits if nitrogen were redistributed on a shorter time scale. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oecologia Springer Journals

Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program

Loading next page...
 
/lp/springer-journals/allocating-leaf-nitrogen-for-the-maximization-of-carbon-gain-leaf-age-Br30sCKoS1
Publisher site
See Article on Publisher Site

Abstract

Simulations using a biochemically-based model of leaf photosynthesis make it possible to predict the distribution of leaf nitrogen contents that maximizes photosynthetic carbon gain over the canopy of an entire plant. In general, the optimal nitrogen content increased with increasing daily photosynthetically active photon irradiance. Leaf aging in natural environments tended to produce leaf nitrogen contents that were similar to the optimal values but somewhat more clustered. Nitrogen redistribution over the duration of a leaf involves costs that are smaller than the benefits in increased photosynthesis. The costs could become larger than the benefits if nitrogen were redistributed on a shorter time scale.

Journal

OecologiaSpringer Journals

Published: Feb 1, 1983

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off