Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Friedrich, Christian Horoba, F. Neumann (2009)
Multiplicative approximations and the hypervolume indicatorProceedings of the 11th Annual conference on Genetic and evolutionary computation
K. Maute, G. Reich (2006)
Integrated Multidisciplinary Topology Optimization Approach to Adaptive Wing DesignJournal of Aircraft, 43
M. Sensmeier, J. Samareh (2004)
A Study of Vehicle Structural Layouts in Post-WWII Aircraft
Daisaku Inoyama, B. Sanders, J. Joo (2008)
Topology Optimization Approach for the Determination of the Multiple-Configuration Morphing Wing StructureJournal of Aircraft, 45
J. Cooper (2007)
Adaptive Aeroelastic Structures
D. Tang, E. Dowell, K. Hall (1999)
Limit Cycle Oscillations of a Cantilevered Wing in Low Subsonic FlowAIAA Journal, 37
A. Rothwell (1989)
Multi-level optimization of aircraft shell structures
K. Maute, M. Allen (2004)
Conceptual design of aeroelastic structures by topology optimizationStructural and Multidisciplinary Optimization, 27
D. Bounds (1988)
Optimization methodsNature, 331
K. Hall (1994)
Eigenanalysis of unsteady flows about airfoils, cascades, and wings
K. Amadori, C. Jouannet, P. Krus (2007)
A Framework for Aerodynamic and Structural Optimization in Conceptual Design
B. Stanford, P. Ifju (2008)
Aeroelastic topology optimization of membrane structures for micro air vehiclesStructural and Multidisciplinary Optimization, 38
Aeroelastic analysis of an aircraft wing structure-the use of a discrete-time model. Presented at the 20th Conference of Mechanical Engineering Network of Thailand
R. Harder, R. Desmarais (1972)
Interpolation using surface splines.Journal of Aircraft, 9
Y Xu, S Li, X Rong (2005)
Composite structural optimization by genetic algorithm and neural network response surface modelingChin J Aeroelast, 18
Edwin Lerner, J. Markowitz (1978)
An Efficient Structural Resizing Procedure for Meeting Static Aeroelastic Design ObjectivesJournal of Aircraft, 16
L. Hansen, P. Horst (2008)
Multilevel optimization in aircraft structural design evaluationComputers & Structures, 86
(2011)
ANSYS mechanical APDL and mechanical applications theory references
A. Sofla, S. Meguid, K. Tan, W. Yeo (2010)
Shape morphing of aircraft wing: Status and challengesMaterials & Design, 31
J Katz, A Plotkin (1991)
Low-speed aerodynamics from wing theory to panel methods
T Kunakote, S Bureerat (2011)
Structural topology optimization using multiobjective evolutionary algorithmsEng Optim, 43
(2004)
Department of Mechanical Engineering
D. Walker (2015)
Topology Optimization of an Aircraft Wing
M. Dardel, F. Bakhtiari-Nejad (2010)
A reduced order of complete aeroelastic model for limit cycle oscillationsAerospace Science and Technology, 14
S. Bandyopadhyay, S. Saha, U. Maulik, K. Deb (2008)
A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSAIEEE Transactions on Evolutionary Computation, 12
Sujin Bureerat, S. Srisomporn (2010)
Optimum plate-fin heat sinks by using a multi-objective evolutionary algorithmEngineering Optimization, 42
Kerr-Jia Lu, S. Kota (2003)
Design of Compliant Mechanisms for Morphing Structural ShapesJournal of Intelligent Material Systems and Structures, 14
M. Bendsøe (2009)
Topology Optimization
Suwin Sleesongsom, Sujin Bureerat (2011)
Effect of Actuating Forces on Aeroelastic Characteristics of a Morphing Aircraft WingApplied Mechanics and Materials, 52-54
J. Eves, V. Toropov, H. Thompson, P. Gaskell, John Doherty, J. Harris (2009)
Topology optimization of aircraft with non-conventional configurations
K Saitou, K Izui, S Nishiwaki, P Papalambros (2005)
A survey of structural optimization in mechanical product developmentTrans ASME, 5
L. Krog, A. Tucker, Martin Kemp, R. Boyd (2004)
Topology Optimisation of Aircraft Wing Box Ribs
M. Bendsøe, A. Ben-Tal, J. Zowe (1994)
Optimization methods for truss geometry and topology designStructural optimization, 7
Yuanming Xu, Shuo Li, Xiaomin Rong (2005)
Composite Structural Optimization by Genetic Algorithm and Neural Network Response Surface ModelingChinese Journal of Aeronautics, 18
M. Allen, F. Alvi, C. Anhalt, A. Annaswamy, R. Antcliff, H. Antoine, J. Archambaud, P. Arendsen, J. Austin, R. Ay, M. Bakker, A. Banaszuk, D. Barberis, S. Barre, W. Baumann, J. Bauschat, M. Noyer, J. Becker, P. Berenbrink, J. Betterton, J. Birkemeyer, N. Bissinger, R. Blonbou, J. Bonnet, K. Breisacher, E. Breitbach, F. Breugelmans, H. Buchholz, A. Büter, L. Campanile, S. Candel, V. Carli, G. Carman, D. Caruana, P. Chen, C. Chenault, J. Chivers, J. Cohen, É. Collin, M. Correge, C. Cravero, F. Culick, A. Boer, S. Zilwa, J. Delaat, C. Despré, M. D´Ischia, J. Dorris, A. Dowling, D. Dunaway, J. Dürr, G. Duus, U. Ehlert, R. Elavarasan, L. Enghardt, A. Epstein, S. Evesque, E. Field, C. Fielding, C. François, H. Gassot, R. Bocki, W. Geissler, W. Gembler, A. Ghoniem, P. Giannattasio, P. Girodroux-Lavigne, S. Gleis, A. Glezer, J. Gobert, M. Golnaraghi, F. Grauer, A. Gubbels, E. Gutmark, L. Haber, Klaus-Uwe Hahn, H. Hahn, P. Hakenesch, S. Hanagud, E. Hanff, R. Hanley, H. Hanselka, J. Hathout, W. Heine, D. Henderson, D. Hennecke, J. Hermann, U. Herold-Schmidt, J. Hibshman, S. Hoffmann, B-S. Hong, K. Hortstmann, D. Ikaza, G. Isella, C. Jacobson, J. Jagoda, P. Jänker, M. Jost, J. Julliard, S. Keller, A. Khajepour, V. Khanna, A. Khibnik, K. Kim, R. Kind, A. Knauer, A. Krichene, A. Krothapalli, R. Kube, A. Kurtz, K. Langan, A. Laverdant, K. Lawson, J. Balleur, R. Lee, J. Lee, S. Liberatore, K. Lietzau, D. Liu, P. Lodge, J. Lovett, C. Lozachmeur, M. Maina, A. Massardo, M. Mawid, D. Mayer, V. McDonell, Anna-Marie McGowan, I. McKenzie, J. Mcvey, S. Menon, F. Methling, M. Mettenleiter, D. Micheli, A. Mignosi, T. Mitchell, D. Mitchell, M. Miyasato, P. Molton, D. Moorhouse, A. Moran, R. Murray, C. Nam, A. Ned, W. Neise, Y. Neumeier, G. Niesl, F. Nitzsche, M. Ondáš, A. Orthmann, J. Paduano, G. Pailhas, J. Park, T. Park, T. Parr, C. Paschereit, E. Pendleton, P. Pinamonti, J. Prasad, R. Preute, W. Proscia, A. Quast, C. Rausch, A. Ray, O. Reberga, M. Richman, W. Riess, R. Rivir, H. Rosemann, T. Rosfjord, K. Rossitto, A. Roure, D. Sachau, G. Samuelsen, D. Santavicca, W. Saunders, K. Schadow, D. Schimke, V. Schmitt, B. Schuermans, K. Schultz, J. Seitzman, B. Sekar, O. Sensburg, C. Seywert, C. Shih, H. Sobieczky, W. Splettstoesser, E. Stanewsky, D. Steele, J. Stenzler, H. Stoff, R. Szczepanik, U. Tapken, C. Tilmann, J. Tilston, A. Traore, M. Trenker, M. Turner, J. Uhm, B. Uhrmeister, B. Wall, U. Vandsburger, M. Vaudrey, R. Veul, B. Vogl, R. Vogt, F. Vuillot, Stefan Wagner, B. Wake, M. Walbaum, D. Walker, J. Whitelaw, D. Willemsen, M. Wilson, K. Wilson, M. Witos, P. Wong, V. Yang, K. Yu, N. Yurchenko, H. Zaglauer, Y. Zhang, D. Zimcik, B. Zinn (2001)
Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles
S. Baluja (1994)
A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning
L. Saggere, S. Kota (1999)
Static Shape Control of Smart Structures Using Compliant MechanismsAIAA Journal, 37
R. Nangia (1992)
Low-Speed Aerodynamics: from Wing Theory to Panel Methods J. Katz and A. Plotkin McGraw-Hill, McGraw Hill House, Shoppenhangers Road, Maidenhead, Berks, SL6 2QL. 1991. 632 pp. Illustrated. £32.95.The Aeronautical Journal
Hak-Tae Lee, I. Kroo, Stefan Bieniawski (2002)
Flutter Suppression for High Aspect Ratio Flexible Wings Using Microflaps
K. Deb, Amrit Pratap, T. Meyarivan (2001)
Constrained Test Problems for Multi-objective Evolutionary Optimization
Suwin Sleesongsom, Sujin Bureerat (2013)
New conceptual design of aeroelastic wing structures by multi-objective optimizationEngineering Optimization, 45
Wen Wang, Shijun Guo, W. Yang (2011)
Simultaneous partial topology and size optimization of a wing structure using ant colony and gradient based methodsEngineering Optimization, 43
JE Cooper (2007)
Adaptive structures: engineering applications
Michael Margaliot, Jong-Hwan Kim, Ye-Hoon Kim, Seung-Hwan Choi, In-Won Park (2009)
Evolutionary multi-objective optimization in robot soccer system for educationIEEE Computational Intelligence Magazine, 4
L. Shili, Ge Wenjie, Li Shujun (2008)
Optimal Design of Compliant Trailing Edge for Shape ChangingChinese Journal of Aeronautics, 21
(2004)
Optimization of UAVs with adaptive internal structures. Presented at the 5th ASMO conference
(2009)
Comparing flutter analysis programs for low air - vehicles
Algis Lencus, O. Querin, G. Steven, Y. Xie (2002)
Aircraft wing design automation with ESO and GESOInternational Journal of Vehicle Design, 28
Sujin Bureerat, Krit Sriworamas (2007)
Population-Based Incremental Learning for Multiobjective Optimisation
A morphing wing concept has been investigated over the last decade because it can effectively enhance aircraft aerodynamic performance over a wider range of flight conditions through structural flexibility. The internal structural layouts and component sizes of a morphing aircraft wing have an impact on aircraft performance i.e. aeroelastic characteristics, mechanical behaviors, and mass. In this paper, a novel design approach is proposed for synthesizing the internal structural layout of a morphing wing. The new internal structures are achieved by using two new design strategies. The first design strategy applies design variables for simultaneous partial topology and sizing optimization while the second design strategy includes nodal positions as design variables. Both strategies are based on a ground structure approach. A multiobjective optimization problem is assigned to optimize the percentage of change in lift effectiveness, buckling factor, and mass of a structure subject to design constraints including divergence and flutter speeds, buckling factors, and stresses. The design problem is solved by using multiobjective population-based incremental learning (MOPBIL). The Pareto optimum results of both strategies lead to different unconventional wing structures which are superior to their conventional counterparts. From the results, the design strategy that uses simultaneous partial topology, sizing, and shape optimization is superior to the others based on a hypervolume indicator. The aeroelastic parameters of the obtained morphing wing subject to external actuating torques are analyzed and it is shown that it is practicable to apply the unconventional wing structures for an aircraft.
Structural and Multidisciplinary Optimization – Springer Journals
Published: Jun 12, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.