Access the full text.
Sign up today, get DeepDyve free for 14 days.
(1968)
Magenes —Probì emes aux limites non homogènes et applications
R. Verfürth (1999)
Error estimates for some quasi-interpolation operatorsJournal of Multivariate Analysis
R. Verfürth (1998)
Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equationNumerische Mathematik, 78
A residual error estimator for the finite element method on anisotropic tetrahedral or triangular meshes, in preparation
M. Dauge (1992)
Neumann and mixed problems on curvilinear polyhedraIntegral Equations and Operator Theory, 15
(1997)
Analyse mathématique et océanographie, Collection
P. Clément (1975)
Approximation by finite element functions using local regularization, 9
S. Clain, R. Touzani (1997)
Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficientsMathematical Modelling and Numerical Analysis, 31
Rüdiger Verführt (1996)
A review of a posteriori error estimation and adaptive mesh-refinement techniques
P. Grisvard (1985)
Elliptic Problems in Nonsmooth Domains
(1991)
Ciarlet — Basic Error Estimates for Elliptic Problems, in the Handbook of Numerical Analysis
G. Kunert (1999)
A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes
N. Meyers (1963)
An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equationsAnnali Della Scuola Normale Superiore Di Pisa-classe Di Scienze, 17
P. Ciarlet (1991)
Basic error estimates for elliptic problemsHandbook of Numerical Analysis, 2
Numer. Math. (2000) 85: 579–608 Numerische Digital Object Identifier (DOI) 10.1007/s002110000135 Mathematik Adaptive finite element methods for elliptic equations with non-smooth coefficients 1 2 C. Bernardi ,R.Verfurth ¨ Analyse Numerique, ´ C.N.R.S. Universite ´ Pierre et Marie Curie, B.C. 187, 4 place Jussieu, F-75252 Paris Cedex 05, France; e-mail: [email protected] Fakultat ¨ fur ¨ Mathematik, Ruhr-Universitat ¨ Bochum, D-44780 Bochum, Germany; e-mail: [email protected] Received February 5, 1999 / Published online March 16, 2000 – Springer-Verlag 2000 Dedicated to Prof. P.-A. Raviart who showed us the beauty of Numerical Analysis Summary. We consider a second-order elliptic equation with discontinuous or anisotropic coefficients in a bounded two- or three dimensional domain, and its finite-element discretization. The aim of this paper is to prove some a priori and a posteriori error estimates in an appropriate norm, which are independent of the variation of the coefficients. Resum ´ e. ´ Nous considerons ´ une equation ´ elliptique du second ordre a ` co- efficients discontinus ou anisotropes dans un domaine borne ´ en dimension 2 ou 3, et sa discretisation ´ par el ´ ements ´ finis. Le but de cet article est de demontrer ´ des estimations d’erreur a priori et a
Numerische Mathematik – Springer Journals
Published: Jun 1, 2000
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.