Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Staunton, R. Banerjee, M. Dias, A. Deák, L. Szunyogh (2014)
Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: Compositional hypersensitivity of FeRhPhysical Review B, 89
X. Moya, E. Stern-Taulats, S. Crossley, D. González-Alonso, S. Kar‐Narayan, A. Planes, L. Mañosa, N. Mathur (2013)
Giant Electrocaloric Strength in Single‐Crystal BaTiO3Advanced Materials, 25
O. Tegus, E. Brück, Lei Zhang, Dagula, K. Buschow, F. Boer (2002)
Magnetic-phase transitions and magnetocaloric effectsPhysica B-condensed Matter, 319
Á. Antal, B. Lazarovits, L. Udvardi, L. Szunyogh, B. Ujfalussy, P. Weinberger (2008)
First-principles calculations of spin interactions and the magnetic ground states of Cr trimers on Au(111)Physical Review B, 77
M. Baum, K. Schmalzl, P. Steffens, A. Hiess, L. Regnault, M. Meven, P. Becker, L. Bohatý, M. Braden (2013)
Controlling toroidal moments by crossed electric and magnetic fieldsPhysical Review B, 88
Cleber Alves, S. Gama, A. Coelho, E. Plaza, A. Carvalho, L. Cardoso, A. Persiano (2004)
Giant magnetocaloric effect in Gd5(Si2Ge2) alloy with low purity GdMaterials Research-ibero-american Journal of Materials, 7
C. Bean, D. Rodbell (1962)
Magnetic Disorder as a First-Order Phase TransformationPhysical Review, 126
L. Caron, X. Miao, J. Klaasse, S. Gama, E. Bruck (2013)
Tuning the giant inverse magnetocaloric effect in Mn2−xCrxSb compoundsApplied Physics Letters, 103
N. Mermin (1965)
Thermal Properties of the Inhomogeneous Electron GasPhysical Review, 137
E. Bonnot, R. Romero, L. Mañosa, E. Vives, A. Planes (2008)
Elastocaloric effect associated with the martensitic transition in shape-memory alloys.Physical review letters, 100 12
V. Pecharsky, K. Gschneidner (1997)
Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2})Physical Review Letters, 78
K. Sandeman (2012)
Magnetocaloric materials: The search for new systemsScripta Materialia, 67
J. Zemen, E. Tapia, Z. Gercsi, R. Banerjee, C. Patrick, J. Staunton, K. Sandeman (2016)
Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theoryPhysical Review B, 95
E. Mendive-Tapia, Teresa Cast'an (2015)
Magnetocaloric and barocaloric responses in magnetovolumic systemsPhysical Review B, 91
N. Spaldin, M. Fiebig, M. Mostovoy (2008)
The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effectJournal of Physics: Condensed Matter, 20
A. Planes, L. Mañosa, A. Saxena (2008)
Magnetism and Structure in Functional Materials
S. Shallcross, A. Kissavos, V. Meded, A. Ruban (2005)
An ab initio effective Hamiltonian for magnetism including longitudinal spin fluctuationsPhysical Review B, 72
T. Castán, A. Planes, A. Saxena (2012)
Thermodynamics of ferrotoroidic materials: Toroidocaloric effectPhysical Review B, 85
S. Khmelevskyi, A. Ruban, P. Mohn (2016)
Magnetic ordering and exchange interactions in structural modifications of M n 3 Ga alloys: Interplay of frustration, atomic order, and off-stoichiometryPhysical Review B, 93
S. Nikitin, G. Myalikgulyev, M. Annaorazov, A. Tyurin, R. Myndyev, S. Akopyan (1992)
Giant elastocaloric effect in FeRh alloyPhysics Letters A, 171
A. Tishin, Y. Spichkin (2003)
The Magnetocaloric Effect and its Applications
E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, L. Mañosa (2014)
Barocaloric and magnetocaloric effects in Fe49Rh51Physical Review B, 89
S. Khmelevskyi, T. Khmelevska, A. Ruban, P. Mohn (2007)
Magnetic exchange interactions in the paramagnetic state of hcp GdJournal of Physics: Condensed Matter, 19
P. Tolédano, D. Khalyavin, L. Chapon (2011)
Spontaneous toroidal moment and field-induced magnetotoroidic effects in Ba2CoGe2O7Physical Review B, 84
B. Neese, Baojin Chu, Shengguo Lu, Yong Wang, E. Furman, Qiming Zhang (2008)
Large Electrocaloric Effect in Ferroelectric Polymers Near Room TemperatureScience, 321
D. Matsunami, A. Fujita, K. Takenaka, M. Kano (2015)
Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN.Nature materials, 14 1
[Chapters 2 and 3 contain the DFT-DLM theory adopted in this thesis and the entire formalism of how to use KKR-MST in the context of SDFT to describe magnetism at finite temperatures. The central quantities obtained by the theory are the derivatives of ⟨Ωint⟩0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \Omega ^\text {int}\rangle _0$$\end{document}, namely the internal local fields {hnint}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\mathbf {h}}^{\text {int}}_n\}$$\end{document} and the direct correlation function. Their calculation as a function of the state of magnetic order {mn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\mathbf {m}}_n\}$$\end{document} sets the basis of the study of magnetic structures and their stabilisation.]
Published: Jan 3, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.