A new strategy for construction of artificial miRNA vectors in Arabidopsis

A new strategy for construction of artificial miRNA vectors in Arabidopsis MicroRNAs are a class of small RNAs that specifically suppress their target genes by transcript cleavage or/and translation repression. Natural miRNA precursors have been used for the backbones of artificial miRNA precursors, which can give rise to expected artificial miRNAs with which to repress specific target genes. Artificial miRNA technology is a powerful tool to silence genes of interest. However, it is costly and time-consuming to construct artificial miRNA precursors by the use of an overlapping PCR method. We describe a new strategy to construct artificial miRNAs. A miRNA gene consists of three components (upstream, stem-loop, and downstream regions). Upstream and downstream regions of a natural miRNA transcript were amplified in conjunction with the introduction of two suitable restriction sites in the amplicons, which were inserted into a plasmid to form a median vector. Production of an artificial miRNA vector was easily achieved by insertion of an artificial stem-loop into the median vector. The artificial miRNAs produced by this method efficiently repressed their target genes in Arabidopsis. In addition, two artificial miRNA constructs were expressed as one polycistron driven by the CaMV 35S promoter and their targets were suppressed simultaneously in Arabidopsis. Thus, artificial miRNAs are a powerful tool with which to analyze rapidly the functions of not only a single gene or multiple homologous genes, but also multiple non-homologous genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Planta Springer Journals

A new strategy for construction of artificial miRNA vectors in Arabidopsis

Loading next page...
 
/lp/springer-journals/a-new-strategy-for-construction-of-artificial-mirna-vectors-in-KpsNFjhb9v
Publisher site
See Article on Publisher Site

Abstract

MicroRNAs are a class of small RNAs that specifically suppress their target genes by transcript cleavage or/and translation repression. Natural miRNA precursors have been used for the backbones of artificial miRNA precursors, which can give rise to expected artificial miRNAs with which to repress specific target genes. Artificial miRNA technology is a powerful tool to silence genes of interest. However, it is costly and time-consuming to construct artificial miRNA precursors by the use of an overlapping PCR method. We describe a new strategy to construct artificial miRNAs. A miRNA gene consists of three components (upstream, stem-loop, and downstream regions). Upstream and downstream regions of a natural miRNA transcript were amplified in conjunction with the introduction of two suitable restriction sites in the amplicons, which were inserted into a plasmid to form a median vector. Production of an artificial miRNA vector was easily achieved by insertion of an artificial stem-loop into the median vector. The artificial miRNAs produced by this method efficiently repressed their target genes in Arabidopsis. In addition, two artificial miRNA constructs were expressed as one polycistron driven by the CaMV 35S promoter and their targets were suppressed simultaneously in Arabidopsis. Thus, artificial miRNAs are a powerful tool with which to analyze rapidly the functions of not only a single gene or multiple homologous genes, but also multiple non-homologous genes.

Journal

PlantaSpringer Journals

Published: Feb 17, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off