A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11

A new bioorganic fertilizer can effectively control banana wilt by strong colonization with... Fusarium wilt is one of the most serious diseases caused by a soil-borne pathogen affecting banana production. The goal of this study was to evaluate the capability of a novel bio-organic fertilizer (BIO2) that integrated the biocontrol agent Bacillus subtilis N11, and mature composts to control Fusarium wilt of banana in pot experiments. The results showed that the application of the BIO2 significantly decreased the incidence rate of Fusarium wilt compared to the control. To determine the antagonistic mechanism of the strain, we also studied the colonization of the natural biocontrol agent on banana roots using a GFP marker. The studies were performed in a hydroponic culture system, a sand system and a natural soil system. The results indicated that the bacteria colonized predominantly by forming biofilms along the elongation and differentiation zones of the roots. The fact that similar observations were obtained in all three systems suggests that colonization by N11 can be studied in a defined system. The population of B. subtilis N11 in the rhizosphere and on banana roots was also monitored. We speculate that the colonization pattern of B.subtilis N11 can be linked to the mechanism of protection of plants from fungal infection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant and Soil Springer Journals

A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11

Loading next page...
 
/lp/springer-journals/a-new-bioorganic-fertilizer-can-effectively-control-banana-wilt-by-AJEPnpWiHj
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Soil Science & Conservation ; Plant Sciences ; Plant Physiology; Ecology
ISSN
0032-079X
eISSN
1573-5036
D.O.I.
10.1007/s11104-011-0729-7
Publisher site
See Article on Publisher Site

Abstract

Fusarium wilt is one of the most serious diseases caused by a soil-borne pathogen affecting banana production. The goal of this study was to evaluate the capability of a novel bio-organic fertilizer (BIO2) that integrated the biocontrol agent Bacillus subtilis N11, and mature composts to control Fusarium wilt of banana in pot experiments. The results showed that the application of the BIO2 significantly decreased the incidence rate of Fusarium wilt compared to the control. To determine the antagonistic mechanism of the strain, we also studied the colonization of the natural biocontrol agent on banana roots using a GFP marker. The studies were performed in a hydroponic culture system, a sand system and a natural soil system. The results indicated that the bacteria colonized predominantly by forming biofilms along the elongation and differentiation zones of the roots. The fact that similar observations were obtained in all three systems suggests that colonization by N11 can be studied in a defined system. The population of B. subtilis N11 in the rhizosphere and on banana roots was also monitored. We speculate that the colonization pattern of B.subtilis N11 can be linked to the mechanism of protection of plants from fungal infection.

Journal

Plant and SoilSpringer Journals

Published: Jul 1, 2011

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off