A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes

A ligation-independent cloning technique for high-throughput assembly of transcription... Transcription activator–like (TAL) effector proteins derived from Xanthomonas species have emerged as versatile scaffolds for engineering DNA-binding proteins of user-defined specificity and functionality. Here we describe a rapid, simple, ligation-independent cloning (LIC) technique for synthesis of TAL effector genes. Our approach is based on a library of DNA constructs encoding individual TAL effector repeat unit combinations that can be processed to contain long, unique single-stranded DNA overhangs suitable for LIC. Assembly of TAL effector arrays requires only the combinatorial mixing of fluids and has exceptional fidelity. TAL effector nucleases (TALENs) produced by this method had high genome-editing activity at endogenous loci in HEK 293T cells (64% were active). To maximize throughput, we generated a comprehensive 5-mer TAL effector repeat unit fragment library that allows automated assembly of >600 TALEN genes in a single day. Given its simplicity, throughput and fidelity, LIC assembly will permit the generation of TAL effector gene libraries for large-scale functional genomics studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Biotechnology Springer Journals

A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes

Loading next page...
 
/lp/springer-journals/a-ligation-independent-cloning-technique-for-high-throughput-assembly-m0JpJG95LV
Publisher
Springer Journals
Copyright
Copyright © 2012 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
ISSN
1087-0156
eISSN
1546-1696
D.O.I.
10.1038/nbt.2460
Publisher site
See Article on Publisher Site

Abstract

Transcription activator–like (TAL) effector proteins derived from Xanthomonas species have emerged as versatile scaffolds for engineering DNA-binding proteins of user-defined specificity and functionality. Here we describe a rapid, simple, ligation-independent cloning (LIC) technique for synthesis of TAL effector genes. Our approach is based on a library of DNA constructs encoding individual TAL effector repeat unit combinations that can be processed to contain long, unique single-stranded DNA overhangs suitable for LIC. Assembly of TAL effector arrays requires only the combinatorial mixing of fluids and has exceptional fidelity. TAL effector nucleases (TALENs) produced by this method had high genome-editing activity at endogenous loci in HEK 293T cells (64% were active). To maximize throughput, we generated a comprehensive 5-mer TAL effector repeat unit fragment library that allows automated assembly of >600 TALEN genes in a single day. Given its simplicity, throughput and fidelity, LIC assembly will permit the generation of TAL effector gene libraries for large-scale functional genomics studies.

Journal

Nature BiotechnologySpringer Journals

Published: Dec 16, 2012

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off