Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
[The barotropic free oscillations of the global ocean are defined through the linearized homogeneous shallow water equations (e.g. [57]). 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\eqalign{ & {{\partial v} \over {\partial t}} + fxv + {{r'} \over D}v + F + g\nabla \zeta + L_{sek} = 0 \cr & {{\partial \zeta } \over {\partial t}}\nabla .(Dv) = 0, \cr} $$ \end{document} where ξ denotes the sea surface elevation with respect to the moving sea bottom, v % (u, v) the horizontal current velocity vector. The undisturbed ocean depth is D, the vector of Coriolis acceleration f % 2ω) sin ýz, the coefficient of linear bottom friction r1 and the gravitational acceleration g. F denotes the vector defining the second-order eddy viscosity term (Fℏ,Fý) % (−AhAΔ −AhΔv) and (h, ý) a set of geographic longitude and latitude values. Lsek is the vector of the secondary force of the loading and self-attraction (LSA), it is derived in section 2.1.1. In spherical coordinates this system of equations is written as: 2.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${{\partial u} \over {\partial t}} - 2\omega \,\sin \varphi .v + {{r'} \over D}.U - A_h \Delta Hu + {g \over {R\cos \,\varphi }}{{\partial \zeta } \over {\partial \zeta }} + L_{sek,\lambda } = 0$$ \end{document}2.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${{{{\partial v} \over {\partial t}} + 2\omega \sin \,\varphi .u + {{r'} \over D}.D - A_\lambda \Delta _H v + {g \over R}{{\partial \zeta } \over {\partial \varphi }} + L_{sek,\varphi = 0} } \over {}}$$ \end{document}2.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${{\partial \zeta } \over {\partial t}} + {1 \over {R\,\cos \varphi }}\left( {{{\partial (Du)} \over {\partial \lambda }} + {{\partial (Dv\cos \varphi )} \over {\partial \varphi }} = 0} \right)$$ \end{document}]
Published: Jan 1, 2009
Keywords: Spherical Harmonic; Solid Earth; Free Oscillation; Krylov Subspace; Ocean Bottom
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.