Access the full text.
Sign up today, get DeepDyve free for 14 days.
[A central problem in computational geometry, range searching arises in many applications, and numerous geometric problems can be formulated in terms of range searching. A typical range-searching problem has the following form. Let S be a set of n points in ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}^{d}$$ \end{document}, and let ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document} be a family of subsets of ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}^{d}$$ \end{document}; elements of ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document} are called ranges. Preprocess S into a data structure so that for a query range γ∈ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\gamma \in \mathbb{R}$$ \end{document}, the points in S ∩γ can be reported or counted efficiently. Notwithstanding extensive work on range searching over the last four decades, it remains an active research area. A series of papers by Jirka Matoušek and others in the late 1980s and the early 1990s had a profound impact not only on range searching but also on computational geometry as a whole. This chapter reviews the known results and techniques, including recent developments, for simplex range searching and its variants.]
Published: May 9, 2017
Keywords: Simplex Range Searching; Range Counting Queries; Linear Size Data Structure; Query Time; Query Halfspace
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.