A framework for modeling and evaluating automatic semantic reconciliation

A framework for modeling and evaluating automatic semantic reconciliation The introduction of the Semantic Web vision and the shift toward machine understandable Web resources has unearthed the importance of automatic semantic reconciliation. Consequently, new tools for automating the process were proposed. In this work we present a formal model of semantic reconciliation and analyze in a systematic manner the properties of the process outcome, primarily the inherent uncertainty of the matching process and how it reflects on the resulting mappings. An important feature of this research is the identification and analysis of factors that impact the effectiveness of algorithms for automatic semantic reconciliation, leading, it is hoped, to the design of better algorithms by reducing the uncertainty of existing algorithms. Against this background we empirically study the aptitude of two algorithms to correctly match concepts. This research is both timely and practical in light of recent attempts to develop and utilize methods for automatic semantic reconciliation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

A framework for modeling and evaluating automatic semantic reconciliation

Loading next page...
 
/lp/springer-journals/a-framework-for-modeling-and-evaluating-automatic-semantic-ABYsCTpPRF
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-003-0115-z
Publisher site
See Article on Publisher Site

Abstract

The introduction of the Semantic Web vision and the shift toward machine understandable Web resources has unearthed the importance of automatic semantic reconciliation. Consequently, new tools for automating the process were proposed. In this work we present a formal model of semantic reconciliation and analyze in a systematic manner the properties of the process outcome, primarily the inherent uncertainty of the matching process and how it reflects on the resulting mappings. An important feature of this research is the identification and analysis of factors that impact the effectiveness of algorithms for automatic semantic reconciliation, leading, it is hoped, to the design of better algorithms by reducing the uncertainty of existing algorithms. Against this background we empirically study the aptitude of two algorithms to correctly match concepts. This research is both timely and practical in light of recent attempts to develop and utilize methods for automatic semantic reconciliation.

Journal

The VLDB JournalSpringer Journals

Published: Mar 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off