Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Factorization and classical Darboux transformations In this chapter we describe the algebraical factorization-based method to dress solutions of (1+1)-dimensional equations. We also show how the Darboux transformation (DT) theory appears in this framework. First, in Sect. 2.1, we introduce the non-Abelian Bell polynomials and then generalize them in Sect. 2.2 to formulate in Sect. 2.3 a problem of fac- torization of a polynomial differential operator in the form of division by a monomial from the right and from the left. The relation between the factor- ization rules and the classical Darboux theorem [102] generalized in [314] is described in Sect. 2.4: the formalism produces a compact form of the DT for non-Abelian coefficients of linear operators, polynomial in a differentiation on a ring. Section 2.5 is devoted to a representation of the iterated DTs in terms of quasideterminants. As a highly nontrivial example of the iterated DT formalism, we describe positon solutions of the Korteweg–de Vries (KdV) equation discovered by Matveev [318, 319]. The growing interest in discrete models appeals to wider classes of sym- metry structures of the corresponding nonlinear problems [149, 196, 255, 256, 339]. Very recently a suitable basis for new searches in the field of
Published: Jan 1, 2007
Keywords: Spectral Problem; Darboux Transformation; Spectral Equation; Bell Polynomial; Necessity Condition
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.