“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

A decision-theoretic approach to robust optimization in multivalued graphs



This paper is devoted to the search of robust solutions in finite graphs when costs depend on scenarios. We first point out similarities between robust optimization and multiobjective optimization. Then, we present axiomatic requirements for preference compatibility with the intuitive idea of robustness in a multiple scenarios decision context. This leads us to propose the Lorenz dominance rule as a basis for robustness analysis. Then, after presenting complexity results about the determination of Lorenz optima, we show how the search can be embedded in algorithms designed to enumerate k best solutions. Then, we apply it in order to enumerate Lorenz optimal spanning trees and paths. We investigate possible refinements of Lorenz dominance and we propose an axiomatic justification of OWA operators in this context. Finally, the results of numerical experiments on randomly generated graphs are provided. They show the numerical efficiency of the suggested approach.



Annals of Operations ResearchSpringer Journals

Published: Oct 1, 2006

DOI: 10.1007/s10479-006-0073-0

Free Preview of First Page

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.

Stop missing out on the latest updates in your field

  • We’ll send you automatic email updates on the keywords and journals you tell us are most important to you.
  • There is a lot of content out there, so we help you sift through it and stay organized.