Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeParticle breakage in milling operations is often modeled using population balance models (PBMs). A discrete element method (DEM) model can be coupled with a PBM in order to explicitly identify the effect of material properties on breakage rate. However, the DEM-PBM framework is computationally expensive to evaluate due to high-fidelity DEM simulations. This limits its application in continuous process modeling for dynamic simulation, optimization, or control purposes.MethodsThe current work proposes the use of surrogate modeling (SM) techniques to map mechanistic data obtained from DEM simulations as a function of processing conditions. To demonstrate the benefit of the SM-PBM approach in developing integrated process models for continuous pharmaceutical manufacturing, a comill-tablet press model integration utilizing the proposed framework is presented.ResultsThe SM-PBM approach is in excellent agreement with the DEM-PBM approach to predict particle size distributions (PSDs) and dynamic holdup, with a maximum sum of square errors of 0.0012 for PSD in volume fraction and 0.93 for holdup in grams. In addition, the time taken to run a DEM simulation is in the order of days whereas the proposed hybrid model takes few seconds. The SM-PBM approach also enables comill-tablet press model integration to predict tablet properties such as weight and hardness.ConclusionsThe proposed hybrid framework compares well with a DEM-PBM framework and addresses limitations on computational expense, thus enabling its use in continuous process modeling.
Journal of Pharmaceutical Innovation – Springer Journals
Published: Sep 30, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.