Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Bourne, A. Rennie (2016)
Chern Numbers, Localisation and the Bulk-edge Correspondence for Continuous Models of Topological PhasesMathematical Physics, Analysis and Geometry, 21
C. Bourne, H. Schulz-Baldes (2016)
Application of semifinite index theory to weak topological phasesarXiv: Mathematical Physics
H. Schulz-Baldes, S. Teufel (2012)
Orbital Polarization and Magnetization for Independent Particles in Disordered MediaCommunications in Mathematical Physics, 319
J. Bellissard, A. Elst, H. Schulz-Baldes (1994)
The noncommutative geometry and the quantum Hall e ect
G. Pedersen (1979)
C-Algebras and Their Automorphism Groups
E. Prodan, H. Schulz-Baldes (2016)
Generalized Connes-Chern characters in KK-theory with an application to weak invariants of topological insulatorsarXiv: Operator Algebras
W. Leung (2013)
A RESPONSE THEORY OF TOPOLOGICAL INSULATORS
X. Qi, T. Hughes, Shoucheng Zhang (2008)
Topological field theory of time-reversal invariant insulatorsPhysical Review B, 78
E. Dyn’kin (1975)
An operator calculus based on the Cauchy-Green formulaJournal of Soviet Mathematics, 4
Hermann Schulz-Baldes, Jean Bellissard (1997)
Anomalous Transport: A Mathematical FrameworkReviews in Mathematical Physics, 10
D. Pask, A. Rennie (2005)
The noncommutative geometry of graph C*-algebras I: The index theoremJournal of Functional Analysis, 233
D. Pask, A. Rennie, A. Sims (2007)
Noncommutative Manifolds from Graph and k-Graph C*-AlgebrasCommunications in Mathematical Physics, 292
T. Eisner, B. Farkas, M. Haase, R. Nagel (2015)
Operator Theoretic Aspects of Ergodic Theory
D. Edmunds, W. Evans (1987)
Spectral Theory and Differential OperatorsOxford Scholarship Online
E. Prodan (2015)
Intrinsic Chern-Connes Characters for Crossed Products by $\mathbb Z^d$arXiv: Operator Algebras
B. Helffer, J. Sjöstrand (1989)
Equation de Schrödinger avec champ magnétique et équation de HarperLecture Notes in Physics, 345
A. Connes (1979)
Sur la theorie non commutative de l’integration
D. Pask, A. Rennie, A. Sims (2005)
The Noncommutative Geometry of k-graph C*-AlgebrasJournal of K-theory, 1
A. Carey, V. Gayral, A. Rennie, F. Sukochev (2011)
Index Theory for Locally Compact Noncommutative Geometries
S. Carr, Daniel Massatt, S. Fang, Paul Cazeaux, M. Luskin, E. Kaxiras (2016)
Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist anglePhysical Review B, 95
M. Aizenman, S. Molchanov (1993)
Localization at large disorder and at extreme energies: An elementary derivationsCommunications in Mathematical Physics, 157
Hermann Schulz-Baldes, Jean Bellissard (1998)
A Kinetic Theory for Quantum Transport in Aperiodic MediaJournal of Statistical Physics, 91
E. Prodan, H. Schulz-Baldes (2014)
Non-commutative odd Chern numbers and topological phases of disordered chiral systemsarXiv: Mathematical Physics
Bryan Leung, E. Prodan (2012)
A non-commutative formula for the isotropic magneto-electric responseJournal of Physics A: Mathematical and Theoretical, 46
W. Suijlekom (2014)
Noncommutative Geometry and Particle Physics
E. Prodan, H. Schulz-Baldes (2015)
Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
A. Carey, J. Phillips, A. Rennie (2010)
Twisted cyclic theory and an index theory for the gauge invariant KMS state on the Cuntz algebra O nJournal of K-theory, 6
R. Rammal, J. Bellissard (1990)
An algebraic semi-classical approach to Bloch electrons in a magnetic fieldJournal De Physique, 51
K. Davidson (1996)
C*-algebras by example
E. Prodan, Bryan Leung, J. Bellissard (2013)
The non-commutative nth-Chern number (n ⩾ 1)Journal of Physics A: Mathematical and Theoretical, 46
Dana Williams (2007)
Crossed Products of *-Algebras, 134
S. Neshveyev, E. Størmer (2006)
Dynamical Entropy in Operator Algebras
M. Aizenman (1994)
LOCALIZATION AT WEAK DISORDER: SOME ELEMENTARY BOUNDSReviews in Mathematical Physics, 06
S. Brain, B. Mesland, W. Suijlekom (2013)
Gauge Theory for Spectral Triples and the Unbounded Kasparov ProductJournal of Noncommutative Geometry, 10
M. Aizenman, S. Warzel (2015)
Random Operators: Disorder Effects on Quantum Spectra and Dynamics
É. Cancès, Paul Cazeaux, M. Luskin (2016)
Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructuresJournal of Mathematical Physics, 58
Juntao Song, E. Prodan (2015)
Quantization of topological invariants under symmetry-breaking disorderPhysical Review B, 92
A. Carey, A. Rennie, K. Tong (2008)
Spectral flow invariants and twisted cyclic theory for the Haar state on SUq(2)Journal of Geometry and Physics, 59
D. Ruelle (1999)
Statistical Mechanics: Rigorous Results
[In this Chapter, we review the fundamental theoretical tools, starting with the space of disordered configurations and its associated dynamical systems, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}_d$$\end{document} of the physical observables, together with its Fourier and differential calculus. The latter is provided by a set of commuting derivations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial $$\end{document} and a trace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal T}$$\end{document}. The triple \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal A}_d,\partial ,{\mathcal T})$$\end{document} defines a non-commutative manifold known as the non-commutative Brillouin torus. We reformulate the topological invariants and other response functions in this new framework. We also introduce the magnetic derivations and investigate the behavior of the correlation functions w.r.t. the magnetic fields. This Chapter also fixes the notation and defines the precise settings for the rest of our calculations.]
Published: Mar 18, 2017
Keywords: Fourier Coefficient; Gibbs Measure; Functional Calculus; Differential Calculus; Bernoulli Shift
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.