Access the full text.
Sign up today, get DeepDyve free for 14 days.
W. Miller (1977)
Symmetry and Separation of Variables
G. Watson (1938)
A Note on the Polynomials of Hermite and LaguerreJournal of The London Mathematical Society-second Series
H. Gould (1978)
Euler's Formula fornth Differences of PowersAmerican Mathematical Monthly, 85
H. Goldstine (1976)
A History of Numerical Analysis from the 16th through the 19th Century.
E. Barnes
A New Development of the Theory of the Hypergeometric FunctionsProceedings of The London Mathematical Society
E. Heine (1961)
Handbuch der Kugelfunctionen, Theorie und Anwendungen
S. Chatterjea (1970)
On the Unified Presentation of Classical Orthogonal PolynomialsSiam Review, 12
Warren Johnson (2002)
The Curious History of Faà di Bruno's FormulaThe American Mathematical Monthly, 109
G. Andrews (1996)
Pfaff's method (II): diverse applicationsJournal of Computational and Applied Mathematics, 68
W. Jones, W. Thron (1982)
Encyclopedia of Mathematics and its Applications.Mathematics of Computation, 39
A. Dixon (1902)
Summation of a certain SeriesProceedings of The London Mathematical Society
L. Euler (1967)
Introductio in analysin infinitorum
W. Ames (1999)
Mathematics in Science and EngineeringMathematics in science and engineering, 198
J. Thomae
Beiträge zur Theorie der durch die Heinesche Reihe: darstellbaren Functionen.Journal für die reine und angewandte Mathematik (Crelles Journal), 1869
F. Whipple
Well-Poised Series and Other Generalized Hypergeometrtc SeriesProceedings of The London Mathematical Society
Richard Stanley (1986)
Enumerative Combinatorics
E. Kummer
Über die hypergeometrische Reihe .Journal für die reine und angewandte Mathematik (Crelles Journal), 1836
G. Hardy (1932)
Summation of a Series of Polynomials of LaguerreJournal of The London Mathematical Society-second Series
F. Mehler
Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung.Journal für die reine und angewandte Mathematik (Crelles Journal), 1866
S. Fisk (2000)
Hermite PolynomialsJ. Comb. Theory, Ser. A, 91
J. Burchnall (1941)
A NOTE ON THE POLYNOMIALS OF HERMITEQuarterly Journal of Mathematics, 1
P. Hartman (1965)
Ordinary Differential EquationsJournal of the American Statistical Association, 60
G. Watson (1933)
Notes on Generating Functions of Polynomials: (2) Hermite PolynomialsJournal of The London Mathematical Society-second Series
W. B.
James Stirling: A Sketch of his Life and Works, along with his Scientific CorrespondenceNature, 110
Edwin Smith
Zur Theorie der Heineschen Reihe und ihrer Verallgemeinerung
Jacques Dutka (1991)
The early history of the factorial functionArchive for History of Exact Sciences, 43
G. Gasper, Mizan Rahman (1990)
Basic Hypergeometric Series
G. Andrews (1974)
Applications of Basic Hypergeometric FunctionsSiam Review, 16
F. Whipple
A Group of Generalized Hypergeometric Series: Relations Between 120 Allied Series of the Type F(a,b,ce,f)Proceedings of The London Mathematical Society
L. Carlitz, R. Scoville (1972)
Tangent numbers and operatorsDuke Mathematical Journal, 39
G. Ferraro (1998)
Some Aspects of Euler's Theory of Series:InexplicableFunctions and the Euler–Maclaurin Summation FormulaHistoria Mathematica, 25
J. Jeugt, K. Rao (1999)
Invariance groups of transformations of basic hypergeometric seriesJournal of Mathematical Physics, 40
R. Graham, D. Knuth, Oren Patashnik (1991)
Concrete mathematics - a foundation for computer science
J. Dougall (1906)
On Vandermonde's Theorem, and some more general Expansions, 25
R. Askey (1975)
A Note on the History of Series.
E. Neville (1952)
Jacobian Elliptic Functions
Richard Robinson, J. Needham (1955)
Science and Civilization in China
W. Bailey (1935)
Generalized hypergeometric series
H. Rauch, A. Lebowitz (1974)
Elliptic functions, theta functions, and Riemann surfacesMathematics of Computation, 28
J. Stedall (2001)
The Discovery of Wonders: Reading Between the Lines of John Wallis's Arithmetica infinitorumArchive for History of Exact Sciences, 56
N. Vandermonde, Carl Itzigsohn
Abhandlungen aus der reinen Mathematik
G. Watson (1933)
Notes on Generating Functions of Polynomials: (1) Laguerre PolynomialsJournal of The London Mathematical Society-second Series
E. Feldheim (1942)
Relations entre les polynomes de Jacobi, Laguerre et HermiteActa Mathematica, 75
W. Bailey
Transformations of Generalized Hypergeometric SeriesProceedings of The London Mathematical Society
H. Loeffel (1987)
Blaise Pascal, 1623-1662
L. Slater, W. Rheinboldt (1966)
Generalized hypergeometric functions
A. Kemp, H. Srivastava, H. Manocha (1984)
A treatise on generating functions
P. Henrici (1988)
Applied and Computational Complex Analysis
É. Goursat
Mémoire sur les fonctions hypergéométriques d'ordre supérieurAnnales Scientifiques De L Ecole Normale Superieure, 12
I. Tweddle (2003)
James Stirling's Methodus differentialis
J. Thomae
Abriss einer Theorie der Functionen einer complexen Veränderlichen und der Thetafunctionen
G. Andrews, I. Gessel (1978)
Divisibility properties of the $q$-tangent numbers, 68
L. Pochhammer
Ueber die Differentialgleichung der allgemeineren hypergeometrischen Reihe mit zwei endlichen singulären Punkten.Journal für die reine und angewandte Mathematik (Crelles Journal), 1888
P. Henrici (1977)
Special functions, integral transforms, asymptotics, continued fractions
F. Whipple
Some Transformations of Generalized Hypergeometric SeriesProceedings of The London Mathematical Society
B. Berndt (1985)
Ramanujan's Notebooks
N. Sonine (1880)
Recherches sur les fonctions cylindriques et le développement des fonctions continues en sériesMathematische Annalen, 16
C. Gauss (2011)
DISQUISITIONES GENERALES CIRCA SERIEM INFINITAM
G. Jones, D. Singerman (1987)
Complex Functions: An Algebraic and Geometric Viewpoint
J. Thomae
Ueber die Functionen, welche durch Reihen von der Form dargestellt werden .Journal für die reine und angewandte Mathematik (Crelles Journal), 1879
E. Feldheim (1938)
Quelques Nouvelles Relations Pour les Polynomes D'HermiteJournal of The London Mathematical Society-second Series
Jacques Dutka (1984)
The early history of the hypergeometric functionArchive for History of Exact Sciences, 31
W. Bailey (1953)
ON THE SUM OF A TERMINATING 2F2 (1)Quarterly Journal of Mathematics, 4
J. Grunert
Ueber die Summirung der Reihen von der Form Aφ(0), A1φ(1)x, A2φ(2)x2, .... Anφ(n)xn, ...., wo A eine beliebige constante Größe, An eine beliebige und φ(n) eine ganze rationale algebraische Function der positiven ganzen Zahl n bezeichnet.Journal für die reine und angewandte Mathematik (Crelles Journal), 1843
M. Cantor (1908)
Vorlesungen über Geschichte der MathematikMonatshefte für Mathematik und Physik, 9
Th. Clausen
Ueber die Fälle, wenn die Reihe von der Form y = etc. ein Quadrat von der Form z = etc. hat.Journal für die reine und angewandte Mathematik (Crelles Journal), 1828
G. Andrews (1976)
The theory of partitions
T. Apostol (1976)
Introduction to analytic number theory
F. Whipple
On Well-Poised Series, Generalized Hypergeometric Series having Parameters in Pairs, each Pair with the Same SumProceedings of The London Mathematical Society
Louis Brand, R. Courant, E. McShane (1935)
Differential and Integral Calculus.American Mathematical Monthly, 42
E. Hille (1926)
On Laguerre's Series: First Note.Proceedings of the National Academy of Sciences of the United States of America, 12 4
[We begin with the duality between analytic number theory, combinatorial identities and q-series, to indicate the historical development of the allied disciplines. It is irrelevant what notation we use for the Γ-function, the essential part is that we keep this notation. Section 3.7 is devoted to this important function and the hypergeometric function. We use a vector notation for the Γ-function and introduce the concepts well-poised and balanced series. The binomial coefficients also play an important part since a finite hypergeometric series can always be expressed in two equivalent ways. The three Kummerian summation formulae (and their multiple q-analogues) will follow us in future chapters. We summarise the different schools for Theta functions and show that the elliptic function snu can be written as a balanced quotient of infinite q-shifted factorials. We conclude this chapter with definitions of the most important orthogonal polynomials; we keep Jacobi’s definition for the Jacobi polynomials.]
Published: Jun 18, 2012
Keywords: Hypergeometric Function; Elliptic Function; Theta Function; Hermite Polynomial; Jacobi Polynomial
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.