Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Birman-Schwinger Principle in Galactic DynamicsA Birman-Schwinger Type Operator

A Birman-Schwinger Principle in Galactic Dynamics: A Birman-Schwinger Type Operator [As has been outlined in the introduction, the eigenvalues λ<δ12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda <\delta _1^2$$\end{document} of L=-T2-KT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=-\mathcal{T}^2-\mathcal{K}\mathcal{T}$$\end{document} from (1.16) are in one-to-one correspondence with the eigenvalues 1 of a certain Birman-Schwinger type operator Qλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{Q}_\lambda $$\end{document} that acts on functions Ψ=Ψ(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi =\Psi (r)$$\end{document}.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Birman-Schwinger Principle in Galactic DynamicsA Birman-Schwinger Type Operator

Loading next page...
 
/lp/springer-journals/a-birman-schwinger-principle-in-galactic-dynamics-a-birman-schwinger-6t4coBFVzb
Publisher
Springer International Publishing
Copyright
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
ISBN
978-3-030-75185-2
Pages
53 –88
DOI
10.1007/978-3-030-75186-9_4
Publisher site
See Chapter on Publisher Site

Abstract

[As has been outlined in the introduction, the eigenvalues λ<δ12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda <\delta _1^2$$\end{document} of L=-T2-KT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=-\mathcal{T}^2-\mathcal{K}\mathcal{T}$$\end{document} from (1.16) are in one-to-one correspondence with the eigenvalues 1 of a certain Birman-Schwinger type operator Qλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{Q}_\lambda $$\end{document} that acts on functions Ψ=Ψ(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi =\Psi (r)$$\end{document}.]

Published: Aug 14, 2021

There are no references for this article.