Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Bayesian Analysis of QCD Sum RulesQuarkonium Spectra at Finite Temperature from QCD Sum Rules and MEM

A Bayesian Analysis of QCD Sum Rules: Quarkonium Spectra at Finite Temperature from QCD Sum Rules... [In this chapter, we will discuss a system for which the MEM technique will play an essential role for extracting meaningful information from the sum rules. This is so because, we have in principle no established information on the spectral functions of quarkonia at finite temperature, in contrast to the zero temperature case or the channels investigated in the last two chapters, for which we had at hand experimental information on the existence of the lowest few peaks showing up in the spectral functions. At finite temperature the peaks representing bound states or resonances will, however, inevitably vanish at a certain temperature and a smooth continuum corresponding to weakly interacting quarks will appear instead. At present, we do not know at what temperature this will happen and therefore should better not introduce any strong assumption on the form of the spectral function into the analysis. MEM is the method of choice for such a problem as it extracts the spectral function directly from the sum rules. This chapter is partly based on Gubler et al. (Nucl Phys A897:28, 2013)] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Bayesian Analysis of QCD Sum RulesQuarkonium Spectra at Finite Temperature from QCD Sum Rules and MEM

Part of the Springer Theses Book Series

Loading next page...
 
/lp/springer-journals/a-bayesian-analysis-of-qcd-sum-rules-quarkonium-spectra-at-finite-J3Ae6NenRi

References (27)

  • G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lütgemeier, B. Petersson (1996)

    Thermodynamics of SU(3) lattice gauge theory

    Nuclear Physics, 469

  • K. Nakamura, K. Hagiwara, K. Hikasa, H. Murayama, M. Tanabashi, T. Watari, C. Amsler, M. Antonelli, D. Asner, H. Baer, H. Band, R. Barnett, T. Basaglia, E. Bergren, J. Beringer, G. Bernardi, W. Bertl, H. Bichsel, O. Biebel, E. Blucher, S. Blusk, R. Cahn, M. Carena, A. Ceccucci, D. Chakraborty, Mu-Chun Chen, R. Chivukula, G. Cowan, O. Dahl, G. D’Ambrosio, T. Damour, D. Florian, A. Gouvea, T. DeGrand, G. Dissertori, B. Dobrescu, M. Doser, M. Drees, D. Edwards, S. Eidelman, J. Erler, V. Ezhela, W. Fetscher, B. Fields, B. Foster, T. Gaisser, L. Garren, H. Gerber, G. Gerbier, T. Gherghetta, G. Giudice, S. Golwala, M. Goodman, C. Grab, A. Gritsan, J. Grivaz, D. Groom, M. Grunewald, A. Gurtu, T. Gutsche, H. Haber, C. Hagmann, K. Hayes, M. Heffner, B. Heltsley, J. Hernández-Rey, A. Hocker, J. Holder, J. Huston, J. Jackson, K. Johnson, T. Junk, A. Karle, D. Karlen, B. Kayser, D. Kirkby, S. Klein, C. Kolda, R. Kowalewski, B. Krusche, Yu. Kuyanov, Y. Kwon, O. Lahav, P. Langacker, A. Liddle, Z. Ligeti, Chen Lin, T. Liss, L. Littenberg, K. Lugovsky, S. Lugovsky, J. Lys, H. Mahlke, T. Mannel, A. Manohar, W. Marciano, Alan Martin, A. Masoni, D. Milstead, R. Miquel, K. Mönig, M. Narain, P. Nason, S. Navas, P. Nevski, Y. Nir, K. Olive, L. Pape, C. Patrignani, J. Peacock, S. Petcov, A. Piepke, G. Punzi, A. Quadt, S. Raby, G. Raffelt, B. Ratcliff, P. Richardson, S. Roesler, S. Rolli, A. Romaniouk, L. Rosenberg, J. Rosner, C. Sachrajda, Y. Sakai, G. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, D. Scott, W. Seligman, M. Shaevitz, M. Silari, T. Sjöstrand, J. Smith, G. Smoot, S. Spanier, H. Spieler, A. Stahl, T. Stanev, S. Stone, T. Sumiyoshi, M. Syphers, J. Terning, M. Titov, N. Tkachenko, N. Tornqvist, D. Tovey, T. Trippe, G. Valencia, K. Bibber, G. Venanzoni, M. Vincter, P. Vogel, A. Vogt, W. Walkowiak, C. Walter, D. Ward, B. Webber, G. Weiglein, E. Weinberg, J. Wells, A. Wheeler, L. Wiencke, C. Wohl, L. Wolfenstein, J. Womersley, C. Woody, R. Workman, A. Yamamoto, W. Yao, O. Zenin, Jiayu Zhang, R. Zhu, P. Żyła, G. Harper, V. Lugovsky, P. Schaffner (2000)

    Review of Particle Physics

    The European Physical Journal C - Particles and Fields, 3

  • T. Matsui, H. Satz (1986)

    $J/\psi$ Suppression by Quark-Gluon Plasma Formation

    Physics Letters B, 178

  • M. Shifman, A. Vainshtein, V. Zakharov (1979)

    QCD and resonance physics. theoretical foundations

    Nuclear Physics, 147

  • M. Asakawa, T. Hatsuda (2003)

    J/psi and eta(c) in the deconfined plasma from lattice QCD.

    Physical review letters, 92 1

  • S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V. Ghete, J. Hammer, S. Hänsel, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C. Wulz, V. Mossolov, N. Shumeiko, J. Gonzalez, S. Bansal, L. Benucci, E. Wolf, X. Janssen, J. Maes, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Haevermaet, P. Mechelen, N. Remortel, F. Blekman, S. Blyweert, J. D’Hondt, O. Devroede, R. Suarez, A. Kalogeropoulos, M. Maes, W. Doninck, P. Mulders, G. Onsem, I. Villella, O. Charaf, B. Clerbaux, G. Lentdecker, V. Dero, G. Hammad, T. Hreus, P. Marage, L. Thomas, C. Velde, P. Vanlaer, V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis, S. Başeğmez, G. Bruno, J. Caudron, L. Ceard, E. Gil, J. Jeneret, C. Delaere, D. Favart, A. Giammanco, G. Grégoire, J. Hollar, V. Lemaître, J. Liao, O. Militaru, C. Nuttens, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul, N. Beliy, T. Caebergs, E. Daubie, G. Alves, L. Brito, D. Damião, M. Pol, M. Souza, W. Júnior, W. Carvalho, E. Costa, C. Martins, S. Souza, L. Mundim, H. Nogima, V. Oguri, W. Silva, A. Santoro, S. Amaral, A. Sznajder, C. Bernardes, F. Dias, T. Tomei, E. Gregores, C. Lagana, F. Marinho, P. Mercadante, S. Novaes, S. Padula, N. Darmenov, V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev, B. Pavlov, P. Petkov, J. Bian, G. Chen, H. Chen, C. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, Ming Xu, J. Zang, Z. Zhang, Y. Ban, S. Guo, Y. Guo, Wei Li, Y. Mao, S. Qian, H. Teng, B. Zhu, W. Zou, A. Cabrera, B. Moreno, A. Rios, A. Oliveros, J. Sanabria, N. Godinovic, D. Lelas, K. Lelas, R. Plestina, D. Polic, I. Puljak, Z. Antunović, M. Dželalija, V. Brigljevic, S. Duric, K. Kadija, S. Morović, A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P. Razis, M. Finger, Y. Assran, A. Kamel, S. Khalil, M. Mahmoud, A. Hektor, M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko, V. Azzolini, P. Eerola, G. Fedi, S. Czellár, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland, K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva, D. Sillou, M. Besançon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J. Faure, F. Ferri, S. Ganjour, F. Gentit, A. Givernaud, P. Gras, G. Monchenault, P. Jarry, E. Locci, J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, I. Shreyber, M. Titov, P. Verrecchia, S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj, C. Broutin, P. Busson, C. Charlot, T. Dahms, L. Dobrzyński, S. Elgammal, R. Cassagnac, M. Haguenauer, P. Miné, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Thiebaux, B. Wyslouch, A. Zabi, J. Agram, J. Andrea, D. Bloch, D. Bodin, J. Brom, M. Cardaci, E. Chabert, C. Collard, É. Conte, F. Drouhin, C. Ferro, J. Fontaine, D. Gelé, U. Goerlach, S. Greder, P. Juillot, M. Karim, A. Bihan, Y. Mikami, P. Hove, F. Fassi, D. Mercier, C. Baty, S. Beauceron, N. Beaupère, M. Bedjidian, O. Bondu, G. Boudoul, D. Boumediene, H. Brun, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. Mamouni, J. Fay, S. Gascon, B. Ille, T. Kurca, T. Grand, M. Lethuillier, L. Mirabito, S. Perriès, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier, D. Lomidze, G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, N. Mohr, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, M. Weber, B. Wittmer, M. Ata, E. Dietz-Laursonn, M. Erdmann, T. Hebbeker, C. Heidemann, A. Hinzmann, K. Hoepfner, T. Klimkovich, D. Klingebiel, P. Kreuzer, D. Lanske, J. Lingemann, C. Magass, M. Merschmeyer, A. Meyer, P. Papacz, H. Pieta, H. Reithler, S. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, M. Bontenackels, M. Davids, M. Duda, G. Flügge, H. Geenen, M. Giffels, W. Ahmad, D. Heydhausen, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchalla, O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl, M. Thomas, D. Tornier, M. Zoeller, M. Martin, W. Behrenhoff, U. Behrens, M. Bergholz, A. Bethani, K. Borras, A. Cakir, A. Campbell, E. Castro, D. Dammann, G. Eckerlin, D. Eckstein, A. Flossdorf, G. Flucke, A. Geiser, J. Hauk, H. Jung, M. Kasemann, I. Katkov, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann, R. Mankel, M. Marienfeld, I. Melzer-Pellmann, A. Meyer, J. Mnich, A. Mussgiller, J. Olzem, A. Petrukhin, D. Pitzl, A. Raspereza, A. Raval, M. Rosin, R. Schmidt, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, J. Tomaszewska, R. Walsh, C. Wissing, C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, U. Gebbert, M. Görner, T. Hermanns, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, S. Naumann-Emme, F. Nowak, N. Pietsch, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, M. Schröder, T. Schum, H. Stadie, G. Steinbrück, J. Thomsen, C. Barth, J. Bauer, J. Berger, V. Buege, T. Chwalek, W. Boer, A. Dierlamm, G. Dirkes, M. Feindt, J. Gruschke, C. Hackstein, F. Hartmann, M. Heinrich, H. Held, K. Hoffmann, S. Honc, J. Komaragiri, T. Kuhr, D. Martschei, S. Mueller, T. Müller, M. Niegel, O. Oberst, A. Oehler, J. Ott, T. Peiffer, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, M. Renz, C. Saout, A. Scheurer, P. Schieferdecker (2011)

    Indications of suppression of excited Υ states in Pb-Pb collisions at √(s(NN))=2.76 TeV.

    Physical review letters, 107 5

  • V. Novikov, L. Okun, M. Shifman, A. Vainshtein, M. Voloshin, V. Zakharov (1978)

    Charmonium and gluons

    Physics Reports, 41

  • J. Marrow, J. Parker, G. Shaw (1987)

    QCD sum rules: charmonium

    Zeitschrift für Physik C Particles and Fields, 37

  • G. Sterman (2002)

    At the Frontier of Particle Physics: Handbook of QCD

    Physics Today, 56

  • K. Morita, S. Lee (2007)

    Critical behavior of charmonia across the phase transition : A QCD sum rule approach

    Physical Review C, 77

  • T. Umeda, K. Nomura, H. Matsufuru (2002)

    Charmonium at finite temperature in quenched lattice QCD

    The European Physical Journal C - Particles and Fields, 39

  • G. Aarts, C. Allton, S. Kim, M. Lombardo, M. Oktay, S. Ryan, D. Sinclair, J. Skullerud (2011)

    What happens to the $ \Upsilon $ and ηb in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD

    Journal of High Energy Physics, 2011

  • O. Kaczmarek, F. Karsch, F. Zantow, P. Petreczky (2004)

    Static quark-antiquark free energy and the running coupling at finite temperature

    Physical Review D, 70

  • S. Bethke (2009)

    The 2009 world average of αs

    The European Physical Journal C, 64

  • G. Aarts, S. Kim, M. Lombardo, M. Oktay, S. Ryan, D. Sinclair, J. Skullerud (2010)

    Bottomonium above deconfinement in lattice nonrelativistic QCD.

    Physical review letters, 106 6

  • K. Fukushima, T. Hatsuda (2010)

    The phase diagram of dense QCD

    Reports on Progress in Physics, 74

  • A. Bochkarev, M. Shaposhnikov (1986)

    The spectrum of hot hadronic matter and finite-temperature QCD sum rules

    Nuclear Physics, 268

  • M. Shifman, A. Vainshtein, V. Zakharov (1979)

    QCD and Resonance Physics: Applications

    Nuclear Physics, 147

  • P. Gubler, K. Morita, M. Oka (2011)

    Charmonium spectra at finite temperature from QCD sum rules with the maximum entropy method.

    Physical review letters, 107 9

  • K. Morita, S. Lee (2007)

    Mass shift and width broadening of J/psi in hot gluonic plasma from QCD sum rules.

    Physical review letters, 100 2

  • Chu, Schramm (1994)

    Instanton content of finite temperature QCD matter.

    Physical review. D, Particles and fields, 51 8

  • S. Datta, F. Karsch, P. Petreczky, I. Wetzorke (2003)

    Behavior of charmonium systems after deconfinement

    Physical Review D, 69

  • K. Morita, S. Lee (2009)

    Heavy quarkonium correlators at finite temperature: QCD sum rule approach

    Physical Review D, 82

  • Kei Suzuki, P. Gubler, K. Morita, M. Oka (2012)

    Thermal modification of bottomonium spectra from QCD sum rules with the maximum entropy method

    Nuclear Physics, 897

  • Young-ho Song, S. Lee, K. Morita (2008)

    In-medium modification of P-wave charmonia from QCD sum rules

    Physical Review C, 79

  • T. Schäfer, E. Shuryak (1996)

    Instantons in QCD

    Reviews of Modern Physics, 70

  • David Miller (2006)

    Lattice QCD calculations for the physical equation of state

    Physics Reports, 443

Publisher
Springer Japan
Copyright
© Springer Japan 2013
ISBN
978-4-431-54317-6
Pages
123 –147
DOI
10.1007/978-4-431-54318-3_7
Publisher site
See Chapter on Publisher Site

Abstract

[In this chapter, we will discuss a system for which the MEM technique will play an essential role for extracting meaningful information from the sum rules. This is so because, we have in principle no established information on the spectral functions of quarkonia at finite temperature, in contrast to the zero temperature case or the channels investigated in the last two chapters, for which we had at hand experimental information on the existence of the lowest few peaks showing up in the spectral functions. At finite temperature the peaks representing bound states or resonances will, however, inevitably vanish at a certain temperature and a smooth continuum corresponding to weakly interacting quarks will appear instead. At present, we do not know at what temperature this will happen and therefore should better not introduce any strong assumption on the form of the spectral function into the analysis. MEM is the method of choice for such a problem as it extracts the spectral function directly from the sum rules. This chapter is partly based on Gubler et al. (Nucl Phys A897:28, 2013)]

Published: Mar 30, 2013

Keywords: Charmonium at finite temperature; Bottomonium at finite temperature; Quark-Gluon Plasma; Heavy ion collision

There are no references for this article.