Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

1H, 13C, 15N NMR resonance assignments and secondary structure determination of the extra-cellular domain from the human proapoptotic TRAIL-R2 death receptor 5 (DR5-ECD)

1H, 13C, 15N NMR resonance assignments and secondary structure determination of the... Death receptors (DR) selectively drive cancer cells to apoptosis upon binding to the Tumor necrosis factor-a-Related Apoptosis-Inducing Ligand (TRAIL). Complex formation induces the oligomerization of the death receptors DR4 (TRAIL-R1) and DR5 (TRAIL-R2) and transduces the apoptogenic signal to their respective death domains, leading to Death Inducing Signaling Complex (DISC) formation, caspase activation and ultimately cell death. Several crystal structures of the ExtraCellular Domain from Death Receptor 5 (DR5-ECD) have been reported in complex with the TRAIL ligand or anti-DR5 antibodies, but none for the isolated protein. In order to fill this gap and to perform binding experiments with TRAIL peptidomimetics, we have produced isotopically labelled DR5-ECD and started a conformational analysis by using high-field 3D NMR spectroscopy. Herein, we present the first resonance assignment of a TRAIL receptor in solution and the determination of its secondary structure from NMR chemical shifts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomolecular NMR Assignments Springer Journals

1H, 13C, 15N NMR resonance assignments and secondary structure determination of the extra-cellular domain from the human proapoptotic TRAIL-R2 death receptor 5 (DR5-ECD)

Loading next page...
 
/lp/springer-journals/1h-13c-15n-nmr-resonance-assignments-and-secondary-structure-bosTvVKzGs

References (25)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Nature B.V.
Subject
Physics; Biological and Medical Physics, Biophysics; Polymer Sciences; Biochemistry, general
ISSN
1874-2718
eISSN
1874-270X
DOI
10.1007/s12104-018-9828-1
Publisher site
See Article on Publisher Site

Abstract

Death receptors (DR) selectively drive cancer cells to apoptosis upon binding to the Tumor necrosis factor-a-Related Apoptosis-Inducing Ligand (TRAIL). Complex formation induces the oligomerization of the death receptors DR4 (TRAIL-R1) and DR5 (TRAIL-R2) and transduces the apoptogenic signal to their respective death domains, leading to Death Inducing Signaling Complex (DISC) formation, caspase activation and ultimately cell death. Several crystal structures of the ExtraCellular Domain from Death Receptor 5 (DR5-ECD) have been reported in complex with the TRAIL ligand or anti-DR5 antibodies, but none for the isolated protein. In order to fill this gap and to perform binding experiments with TRAIL peptidomimetics, we have produced isotopically labelled DR5-ECD and started a conformational analysis by using high-field 3D NMR spectroscopy. Herein, we present the first resonance assignment of a TRAIL receptor in solution and the determination of its secondary structure from NMR chemical shifts.

Journal

Biomolecular NMR AssignmentsSpringer Journals

Published: Jun 5, 2018

There are no references for this article.