“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Weather variation and trophic interaction strength: sorting the signal from the noise



Weather can have important consequences for the structure and function of ecological communities by substantially altering the nature and strength of species interactions. We examined the role of intra- and inter-annual weather variability on species interactions in a seasonal old-field community consisting of spider predators, grasshopper herbivores, and grass and herb plants. We experimentally varied the number of trophic levels for 2 consecutive years and tested for inter-annual variation in trophic abundances. Grasshopper emergence varied between years to the extent that the second growing season was 20% shorter than the first one. However, the damage grasshoppers inflicted on plants was greater in the second, shorter growing season. This inter-annual variation in plant abundance could be explained using the foraging-predation risk trade-off displayed by grasshoppers combined with their survival trajectory. Decreased grasshopper survival not only reduced the damage inflicted on plants, it weakened the strength of indirect effects of spiders on grass and herb plants. The most influential abiotic factor affecting grasshopper survival was precipitation. We found a negative association between grasshopper survival and the total yearly precipitation. A finer scale analysis, however, showed that different precipitation modalities, namely, number of rainy days and average precipitation per day, had opposing effects on grasshopper survival, which were inconsistent between years. Furthermore, our results suggest that small changes in these factors should result in changes of up to several orders of magnitude in the mortality rate of grasshoppers. We thus conclude that in this system the foraging-predation risk trade-off displayed by grasshoppers combined with their survival trajectory and relevant weather variability should be incorporated in analytical theory, whose goal is to predict community dynamics.



OecologiaSpringer Journals

Published: Aug 1, 2004

DOI: 10.1007/s00442-004-1604-5

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually