“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Uniqueness of Normal Proofs in Implicational Intuitionistic Logic



A minimal theorem in a logic L is an L-theorem which is not a non-trivial substitution instance of another L-theorem. Komori (1987) raised the question whether every minimal implicational theorem in intuitionistic logic has a unique normal proof in the natural deduction system NJ. The answer has been known to be partially positive and generally negative. It is shown here that a minimal implicational theorem A in intuitionistic logic has a unique β-normal proof in NJ whenever A is provable without non-prime contraction. The non-prime contraction rule in NJ is the implication introduction rule whose cancelled assumption differs from a propositional variable and appears more than once in the proof. Our result improves the known partial positive solutions to Komori's problem. Also, we present another simple example of a minimal implicational theorem in intuitionistic logic which does not have a unique βη-normal proof in NJ.



"Journal of Logic, Language and Information"Springer Journals

Published: Apr 1, 1999

DOI: 10.1023/A:1008254111992

Free Preview of First Page

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.