“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Tree consistency and bounds on the performance of the max-product algorithm and its generalizations



Finding the maximum a posteriori (MAP) assignment of a discrete-state distribution specified by a graphical model requires solving an integer program. The max-product algorithm, also known as the max-plus or min-sum algorithm, is an iterative method for (approximately) solving such a problem on graphs with cycles. We provide a novel perspective on the algorithm, which is based on the idea of reparameterizing the distribution in terms of so-called pseudo-max-marginals on nodes and edges of the graph. This viewpoint provides conceptual insight into the max-product algorithm in application to graphs with cycles. First, we prove the existence of max-product fixed points for positive distributions on arbitrary graphs. Next, we show that the approximate max-marginals computed by max-product are guaranteed to be consistent, in a suitable sense to be defined, over every tree of the graph. We then turn to characterizing the nature of the approximation to the MAP assignment computed by max-product. We generalize previous work by showing that for any graph, the max-product assignment satisfies a particular optimality condition with respect to any subgraph containing at most one cycle per connected component. We use this optimality condition to derive upper bounds on the difference between the log probability of the true MAP assignment, and the log probability of a max-product assignment. Finally, we consider extensions of the max-product algorithm that operate over higher-order cliques, and show how our reparameterization analysis extends in a natural manner.



Statistics and ComputingSpringer Journals

Published: Apr 1, 2004

DOI: 10.1023/B:STCO.0000021412.33763.d5

Free Preview of First Page

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually